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Abstract

Working with algorithms whose performance greatly depends on their parameters requires
conducting numerous experiments and using expert knowledge in order to achieve best results.
In this thesis we evaluate strategies for experimentation and parameter tuning, especially in
the context of machine learning. We introduce Relaks – an embedded programming language
– as a framework for conducting experiments and automatic parameter tuning. An imple-
mentation of the language is presented and later applied in the machine learning domain. We
discuss strengths and weaknesses of the proposed solution and suggest directions for further
development.
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Introduction

Working with algorithms whose performance greatly depends on their parameters requires
conducting many experiments and using expert knowledge in order to achieve best results.
The advent of systematic approach to experiments and automated methods of parameter
space exploration enabled the creation of tools which aid programmers in this process.

Chapter 1 provides an overview of solutions for experimentation and parameter tuning
available in the literature, especially in the context of machine learning. Chapters 2 to
7 introduce Relaks programming language as a framework for conducting experiments and
automated parameter tuning in machine learning. Later, in chapter 8 examples of real life sce-
narios in which Relaks shows its strengths are given. Finally, chapter 9 contains a discussion
about strengths and weaknesses of the proposed solution and ideas for further development.
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Chapter 1

Background

A programmer attempting to solve a problem usually has more than one way of doing so.
While some choices can be easily made based on business requirements and other constraints,
it is hard to distinguish between the others at the time of designing and implementing the
program. Deferring those decisions until later stages of development in the form of parameters
is a common practice. Then a program space, rather than a single program, is formed, capable
of solving a range of problems efficiently.

One area where algorithms benefit from exposing the parameters rather than hard-coding
the decisions based on intuition is machine learning. The goal of these algorithms is to extract
information from data, creating a model that summarizes and provides useful insight into
the input. Algorithms classified as machine learning are often heuristic in nature, each of
them with some expectations of the data’s hidden structure. Their parameters (in this case
called hyperparameters to distinguish them from the parameters of the underlying model)
express further assumptions about that structure. Unfortunately, according to the no-free-
lunch theorem [Wol95; Wol96; For05] no “rule-them-all” machine learning algorithm exists.
A developer interested in achieving maximum performance must look for the best solution
on a per-instance basis. Caffe Model Zoo1 is a model repository, where multiple fine-tuned
versions of just one algorithm (Convolutional Neural Networks) along with the image-based
data sets they are best suited to work with are listed. From existence of such repositories
it is evident that the scale of the problem of finding the best algorithm is vast. Even with
data sets built from just several features it can be hard to find the best fitting algorithm with
only the “naked eye”, so the programmers’ method of choice for selecting the best performing
classifier is experimentation.

1.1. The Machine Learning Process
In the following sections a basic framework and definitions for supervised machine learning
and experimentation are introduced.

1.1.1. Supervised Machine Learning Basics
The first step of applying a machine learning algorithm is called the learning step, where a
summary (in the form of a model or a classifier) is constructed from a training data set. A
training data set consists of multiple instances. Each instance is made up of tuples (X, y),
where X is a vector of values called feature vector or attribute vector and y is the label

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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associated with the feature vector. The goal of the learning step is to fit a function y = f(X)
that best predicts the label y associated with each feature vector X. Because each label of
the training data set is known beforehand, this is a supervised learning task.

In the next step, called the prediction step the learned function f is used to predict the
labels for given vectors X.

To estimate the usefulness of the learned model both training and test (also called gen-
eralization) errors can be computed. Error is a measure of how good the predictions given
by the model are. One such measure is accuracy, a percentage of correctly vs. incorrectly
predicted labels. Test error, computed on the data previously unseen by the algorithm is
especially important, as the model often tends to overfit the data, discovering structures that
are present in the training set, but not true for the general data set. Instances used for
computing generalization error belong to the test set.

1.1.2. Experimentation

It can not be emphasized enough that no claim whatsoever is being made in
this paper that all algorithms are equivalent in practice, in the real world. In
particular, no claim is being made that one should not use cross-validation in the
real world.

Wolpert [Wol95]

Estimating the error of a trained model is important not only for assessing the usefulness of its
future predictions but also for choosing a learning algorithm that best suits the task at hand.
Model selection or hyperparameter tuning/optimization is the problem of minimizing the
generalization error on an independent data set by choosing the best set of hyperparameters.

Cross-validation is an useful tool for measuring the generalization performance. K-fold
cross-validation is performed by dividing the training set into k equally sized mutually exclu-
sive subsets D1, . . . , Dk. Then for each i ∈ {1, . . . , k} the union of subsets (Dj), where j ̸= i
is used as the training set and Di becomes the test set. When the data set is a good repre-
sentation of our problem and error rates across different folds are similar, we can confidently
estimate the general error [Koh95].

Note that in the case of hyperparameter tuning in order to correctly measure the algo-
rithm’s performance some data should be withheld until the meta-learning process is finished
and then used with the final algorithm instance to compute the error rate. As hyperparame-
ter tuning is also a learning procedure, in order to correctly assess the risk of overfitting the
tests must be run on data that has never been used for training.

1.1.3. Hyperparameter Tuning – an Illustrative Example

K nearest neighbors (knn) is one of the simplest classifiers. Given a training data set, the
decision on how to classify a new example is based on the labels of instances in the training
data set closest to the example (the nearest neighbors). Even for a simple algorithm such as
knn there are several decisions to be made:

1. What distance measure is to be used? E.g. the basic Euclidean distance or maximum
distance between two coordinates of the instances (the supremum norm).

2. How many closest instances should be considered (this parameter is the k in knn)?

8
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Figure 1.1: Visualizing knn for different hyperparameter configurations

3. Whenever there is lack of consensus on the label among the nearest neighbors, how
should the winning label be chosen? The decision could be made based on weighted on
unweighted majority.

Figure 1.1 shows different results of a multiclass classification scenario produced by pro-
grams run with different hyperparameters.

In each example the task is to predict the label associated with the instance – its true
label is . The lines connect the k closest neighbors. We can see that in our example among
evaluated configurations only k = 2 with the maximum distance function (fig. 1.1b) would
be able to correctly classify the example (assuming unweighted majority vote).

We do not know if those hyperparameters provide good results for our problem and we can
easily imagine scenarios where they would not. The generalization error should be estimated
using the cross-validation technique described in section 1.1.2.
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1.2. Algorithms for automated hyperparameter optimization
In this section a few methods of exploring the machine learning algorithm space defined by
the hyperparameters are presented. Both methods that make no assumptions about the space
and those that try to create a model given the error function have been successfully applied
the in machine learning context.

1.2.1. Grid Search
Grid search is the most straightforward way of performing parameter optimization. The
parameter space is searched exhaustively.

In our knn example (section 1.1.3) the space could consist of pairs (k, d) for k ∈ {1, . . . , 5},
d ∈ {maximum, euclidean}, so the total number of configurations becomes |k| · |d| = 10. In
order to find the best solution the grid search algorithm would evaluate each of the ten
configurations.

As every possible combination of hyperparameters has to be evaluated, this procedure
suffers from a computational burden, which is prohibitive in many cases and with the pres-
ence of real-valued hyperparameters becomes unfeasible. On the other hand as subsequent
evaluations are typically independent, the algorithm is easily parallelizable and enables the
programmer to specify the order in which the configurations are evaluated.

1.2.2. Other Model-Free Search Methods
Other model-free search methods include random search, which can be employed when the
parameter space size is unfeasible for grid search and algorithms based on Iterated Local
Search (ILS) [Hut+09]. The algorithm paired with an error function performs a local search
to quickly approach optimal solution. Perturbation phases are introduced to ensure that the
search does not converge in a local minimum.

1.2.3. Bayesian Optimization
Bayesian optimization methods treat the machine learning algorithm as a black box function
and, given an error measure, construct a probabilistic model by evaluating certain points in
the hyperparameter space [EFH13]. An acquisition function associated with each Bayesian
optimization algorithm uses the model to asses the useful information obtainable by eval-
uating each point of the hyperparameter space. This function maximized over the hyper-
parameter space is used to make “educated guesses” about which configuration should be
evaluated next. A good acquisition function finds a good configuration by evaluating just a
small part of the space. It is is especially beneficial in the context of machine learning, where
many algorithms’ iterations’ time is measured in minutes rather than milliseconds). Bayesian
optimization algorithms are able to outperform grid search and random search and, in some
cases, human experts [SLA12; Tho+13].

As iterative model improvement is sequential in nature, those algorithms are more difficult
to parallelize than grid or random search.

Spearmint Spearmint is a bayesian optimization method shown to work well with machine
learning algorithms such as Support Vector Machines and Neural Networks [SLA12]. An open
source implementation exists [Sno14], employing several acquisition functions configurable
with a command line parameter and supporting continuous and discrete hyperparameters.
It also offers a limited method of parallelization – several propositions for hyperparameter

10



configurations can be produced at once (based on previous iterations). In this case it is
important to update the model as soon as each evaluation completes, as more information
results in better propositions.

1.3. Present Approaches to Hyperparameter Tuning in Ma-
chine Learning

1.3.1. Holistic Approaches

Programming by Optimisation The article [Hoo10] proposes an approach called Pro-
gramming by Optimisation (PbO) – a general method for exposing choices previously hard
coded by the programmer as parameters and then using an automated parameter optimiza-
tion algorithm in order to find the optimum solution for a problem. The article focuses on
(although is not limited to) optimizing SAT-solvers and proposes an implementations based
on an additional preprocessing phase for programs written in C. With syntax similar to pre-
processor macros the programmer can specify parameters and a range of values each of them
can assume directly in the source code and then use it like she would use a #define constant.
Between each evaluation of different parameter configuration the program would need to be
compiled again, with a different set of constants provided by the preprocessor (there called a
weaver).

Experiment databases The authors of [BV07] emphasize not only the role of experiments
in machine learning process, but also recording results of those experiments for future refer-
ence. They would be stored, along with detailed conditions of the experiment (e.g. summary
of the data set, preprocessing methods) to be queried later by other researches. Experiment
database could provide useful insights as to how certain algorithms perform under specific
conditions and aid future experimentation, narrowing the parameter search scope for data
sets with characteristics similar to the data sets recorded in the database. Authors then
proceed with defining a schema for a relational database, emphasizing attributes that enable
experiment reuse and repeatability. A database containing results of 250000 experiments is
provided.

A universal framework for meta-learning MLAs [JG11] and HAL [Nel+11] are com-
plete frameworks for conducting machine learning experiments. The entire machine learning
pipeline is represented as a graph of blocks (or machines in MLAs) that exchange data be-
tween each other. Hyperparameter tuning is implemented using either ParamILS and racing
procedures in HAL or grid search and its variations in MLAs. Designing more experiments
is available via the framework’s API. An interesting additional parameter associated with
the machine learning algorithm in MLAs is complexity estimation. It is used to reorder
evaluations during the optimization phase, executing simple algorithms first to ensure that
an accurate solution is found as soon as possible. Because the order of execution is known
beforehand, it is also possible to cache and reuse some of the framework’s artifacts (in this
case the machines). For this to work an accurate complexity estimation must be provided by
the programmer.

MLbase [Kra+13] is yet another machine framework that allows hyperparameter op-
timization, but here, unlike the previous examples, an emphasis is put on the simplest
possible interface instead of detailed experimentation record. API calls are as simple as

11



var (fn-model, summary) = doClassify(X, y) and the underlying execution and optimiza-
tion engine is trusted to take care of delivering the best solution. Various heuristic approaches
are employed to optimize hyperparameters for each class of machine learning algorithms and
data sets of certain type. MLbase is not extensible – its usage is limited to the algorithms
and heuristics implemented by the developers.

1.3.2. Extensions to Popular Machine Learning Libraries
Caret The Caret package [Kuh08] is a collection of tools for evaluating machine learning
models in R. Among its numerous elements useful in designing a machine learning pipeline,
it offers basic parameter tuning with a simple API that takes care of running multiple ex-
periments with cross-validation. The optimization method is restricted to grid search and
the machine learning algorithm must integrate with caret’s ecosystem. Also, the algorithm
choice itself cannot be the subject of tuning.

Auto-WEKA An extension to a well-established data mining package WEKA [Hal+09] for
the JVM is descibed in [Tho+13]. It offers several procedures for tuning WEKA’s algorithms,
both model-free and based on bayesian optimization.

12



Chapter 2

Relaks

As we have seen in the previous chapter, experimentation is a crucial element of the machine
learning process. Meta-learning is a useful framework for automating the hyperparameter
optimization task, yet existing, production-ready tools treat it as an add-in rather than an
integral part of the machine learning pipeline. We argue that putting it in the foreground of
a machine learning tool induces good practice and removes a lot of boilerplate code, allowing
the programmer to focus on what is unique for each problem - data and algorithms.

We propose Relaks – a domain specific language (DSL) embedded in Scala that reduces
the complexity of hyperparameter tuning in machine learning algorithms. Meta-learning adds
one more layer to a machine-learning program – it is essentially programming and reasoning
about programs. Therefore, we postulate that it requires special treatment in order to make
it understandable and more reusable.

At the center of Relaks there is a declarative syntax for specifying hyperparameter opti-
mization scenarios. Optimizing an algorithm can be as simple as:

optimize (knnExperiment) by 'errorRate limit 10

As a result, 10 iterations of an optimization algorithm are run, exploring the parameter
space of a knn classifier, looking to minimize the errorRate attribute. This expression would
evaluate to a set of ten results of an optimization procedure represented by tuples – literally
an experiment database (see 1.3.1)! The database can be further queried with syntax akin
to Language Integrated Query (LINQ) from C# [BMT07] in order to further investigate the
results.

As hyperparameter optimization is the main focus of Relaks, hyperparameters get special
treatment as well. Defining a hyperparameter space has its own syntax:

val k = choose between 1 and 5

Here a parameter space for k is defined. Value k can then be used as any other value, and
the optimizer automatically resolves it and adds its space to the optimization’s scope.

Algorithms for automated hyperparameter tuning are integrated into Relaks. Model-free
or model-based implementations can be swapped without making any other changes to the
source code.

Choosing Scala as a host language instead of creating a compiler dedicated to Relaks
removes the necessity to implement a parser and a type checker. Simultaneously Scala’s type
system and syntax is flexible enough to allow a highly customized DSL implementation. This
choice also enables Relaks to leverage the rich set of libraries implemented for Java and Scala
– the DSL is able to call functions available to the host language.

13



Relaks assumes that machine learning programs are usually a set of transformations ap-
plied to data. This assumption follows the popular perception of machine learning programs
as data pipelines, employed by other frameworks, e.g. Spark [Zah+10] or knitr for R [Xie14].
Under this assumption programs are a composition of (often reusable) pure functions that
apply transformations to data. Apart from bringing closer the ideal of reproducible research,
it also allows further features to be implemented in Relaks, such as laziness and transparent
caching of intermediate results.

The following chapters detail the implementation of Relaks. Chapter 3 offers an overview
of state of the art methods for embedding a DSL in Scala. It details the basic features of
Relaks DSL and their carrying out.

Chapter 4 describes the embedding of LINQ–like syntax in Scala, along with a fully static
type system for the queries, made possible by heterogeneous lists and generic tuples.

Chapter 5 leaves for a moment the topic of DSLs and focuses on hyperparameter tuning
algorithms. In Relaks two algorithms are available: grid search and Spearmint. They both
have a common interface, powered by reactive streams.

Chapter 6 details the transformations applied to the internal representation of a Relaks
program. It also describes Relaks’ interpreter.

In chapter 7 additional extensions to the language are introduced, including a SQL data
backend for Relaks’ LINQ and a caching mechanism.

Finally, in chapter 8 we will see how the presented implementation handles optimization
scenarios.

14



Chapter 3

DSL Basics

Let us begin with the general architecture behind DSLs and some terminology.

The main goal of a programming language developer is to create a process transforming
an input in a formal language into a set of instructions for a computer. The set of instruc-
tions may take form of machine code in an executable file (be compiled) or be derived from
a representation understandable by an interpreter, which then issues commands to the ma-
chine. Building internal representation (usually an Abstract Syntax Tree (AST)) is a common
practice, regardless whether a compiler or an interpreter is involved.

DSLs differ from standalone programming languages in how an internal representation is
computed. To understand them better we present a set of definitions introduced in [Tah99].
Meta-program is a program that manipulates other programs. In case of DSLs, the meta-
language is used to generate and manipulate the representation of an object-program. The
evaluation of a DSL is split into stages: generation-time, compile-time and execution-time
for a compiled object-language, or generation-time and execution-time for interpreted imple-
mentations. Thus meta-program and object-program together form a multi-stage program,
where object-program is embedded in the meta-program.

The meta-program contains representations of object-program’s expressions, delaying
their evaluation until later stages (staging them). Note that the run-time (generation-time in
terms of the multi-stage program) of the meta-program is compile-time of the object-program.
Values computed in that stage are static from the perspective of the object-program.

From the developer’s point of view the main benefit of multi-stage programming is lin-
guistic reuse [Kri01]. The object-language can take advantage of the meta-language’s features
such as scoping and a type system. Furthermore, a valid and type-checked meta-program will
ensure syntax and type correctness of an object-program so the repetitive tasks of creating
a parser and a type checker can be skipped. Finally, the multi-stage program can benefit
from the ecosystem of the meta-language – the IDE and, if the meta-language and object-
language target the same execution environment (as it is in the case of Relaks), allow the
object-program to call meta-language constructs.

So why bother with implementing a DSL, if a lot of the meta-language features will be
reused anyway? The direct access to the internal representation is not to be underestimated
– it not only enables both staged-compile-time and run-time optimizations, but also allows
creating semantics different than the semantics of the meta-language. How those traits are
employed to the benefit of Relaks will be explained in later chapters.
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3.1. The Meta-Language: Scala
Scala is a modern, statically typed language that targets the JVM. It offers full compatibility
with the Java code, while implementing an interesting mix of functional and object oriented
semantics. Its flexible syntax allows skipping dots and parentheses in an object’s method
call, effectively allowing method names to become operators. Simultaneously most special
characters (e.g. +, -, =) are valid method names in Scala. Defining unary operators is
enabled by implementing a unary_* method, where * is the desired operator. The syntax
flexibility makes Scala especially attractive for embedding object-programs.

Scala-virtualized [Cha+10] for lightweight modular staging (LMS) [Rom12] enables even
more flexible syntax – a developer can provide her own implementation for class constructors,
variable definitions etc. While the theoretical foundations of LMS have had great impact on
Relaks’ implementation, ultimately we have not decided to base it on Scala-virtualized. At
the time of writing the version of Scala it supports was falling behind the official branch
and, above all, Scala-virtualized lacks support from Scala’s most popular IDEs: Eclipse and
IntelliJ, making it much harder to adopt.

Relaks relies heavily on other advanced features of Scala, such as implicit values and
implicit conversions, covariance and higher order types. Those are described in more detail
in [Ode11]. We will take a closer look at implicits in chapter 4.

3.2. Intermediate Representation
For convenient processing Relaks stores its intermediate representation (IR) as an Abstract
Syntax Tree (AST). We will begin with introducing a few basic nodes and extend the repre-
sentation in later chapters, where Relaks’ additional functionalities are presented.

The architecture of Relaks makes it easy to incrementally add new features. A clear
division is kept between the AST implementation, meta-language manipulation features and
various phases of the interpreter.

The only types of nodes Relaks needs to explicitly represent are expression nodes. The
basic structure is presented in listing 1.

Product and Cloneable traits will be crucial in later stages – they enable a simple, generic
rewriting mechanism for the IR. Product trait’s main purpose is to provide a tuple-like in-
terface to classes that are products of other classes. Case classes include a Product imple-
mentation generated automatically by the compiler. Atom is a superclass for nodes that are
not composed of other nodes. Leaf is a mixin that provides similar information, but in the
context of tree traversal. We will see the difference later in this chapter.

Statements traditionally seen in other programming languages, including e.g. let instruc-
tions, are handled by reusing Scala’s features. Scope reuse is particularly useful and natural.
By leveraging Scala’s scoping rules we can ensure scope correctness and get powerful hygiene-
related tools such as packages and blocks at no cost. As Relaks implements a no-side-effect
language, other control structures like while loops are not present.

3.3. Embedding a Language
Let us take a look at a simple Scala program:

val a = 1
val b = 2
a + b
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Tree

Expression

Atom

Literal Apply

Operator

sealed trait Tree extends Product with Cloneable

trait Leaf extends Product {
override def productElement(n: Int): Any
override def productArity: Int
override def canEqual(that: Any): Boolean

}

trait Expression extends Tree

trait Atom extends Expression

case class Literal(value: Any) extends Atom with Leaf {
override def equals(other: Any): Boolean

}

sealed case class Operator(name: String) extends
Expression↪→

sealed case class Apply(fun: Expression, argList:
List[Expression]) extends Expression↪→

Listing 1: Basic IR nodes

We would like to evaluate a + b as an expression of our DSL. Therefore, we want to arrive
at an AST representation:

Apply(+)

Literal(1) Literal(2)

The representation will later be input to an interpreter or a compiler.
The meta-program generates an object-program by manipulating expressions from the

object-language. To ensure cross-stage correctness those must not be evaluated until the
execution-time of the multi-stage program. But in our example the expression a + b will be
simply evaluated to 3 at generation-time. In order to differentiate between meta-language
(Scala) expressions and object-language (Relaks) expressions that should be evaluated at
later stages while keeping a natural syntax, we need a wrapper for embedded expressions:

trait Rep[+T] {
val tree: Expression

}

Where tree is the root of a AST represented by the wrapper. Next we define an implicit
conversion of a Scala’s Int to a representation of an integer in Relaks:

implicit def intToRep(x: Int): Rep[Int] = new Rep[Int] {
override val tree: Expression = Literal(x)

}
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We also define basic operations for an integer representation:

implicit class IntOps(val arg1: Rep[Int]) {
def +(arg2: Rep[Int]): Rep[Int] = new Rep[Int] {

override val tree = Apply("+", List(arg1.tree, arg2.tree))
}

}

We can picture implicit classes as on-demand mixins that can be added to certain classes
during compile-time. Whenever there is a call to a method that is absent from some class’
instance, the compiler looks for an implicit class (or an implicit conversion) that provides
this method and transparently converts the instance (or inlines the method).

Now the following expression:

val a: Rep[Int] = 1
val b = 2
(a + b).tree

will evaluate to our desired AST representation. Note that Rep-types are viral, as the +
operator requires a Rep[Int] argument, b will be converted automatically.

3.4. Type Reuse
Note, that in the previous example we are already reusing Scala’s type system type to ensure
type correctness: a Rep[Int] can be added only to another Rep[Int] (or an instance of a class
that is a subclass of Rep[Int])1 By taking it further we can generalize IntOps to NumericOps
that would work on doubles, floats, BigInts etc. and save ourselves some work. NumericOps
header becomes:

implicit class NumericOps[T: Field](arg: Rep[T]) { ...

The rest is left unchanged. Here Field is a witness – an evidence that a Field[T] instance
exists for some type T, so NumericOps can be applied to each type Rep[T] whenever an object
of type Field[T] is present. This mechanism is called the Type Class Pattern and was first
introduced in Haskell. It is used for adding ad hoc behavior (and interfaces) to types. Field
comes from Breeze package for Scala [Hal15] and defines basic operations for the underlying
type: division, multiplication, power etc.2

By modifying the conversion to the Literal’s representation we have basic operations for all
numeric types we would need to implement in Relaks covered. With not too much additional
effort in a similar fashion we can implement OrderableOps for Ordering instances from Scala’s
standard package and basic boolean operations for Rep[Boolean].

Calls to == are desugared by the Scala compiler to an .equals() method call, so we will
not override it like the other operators. Instead a === method is implemented. Having two
so similar methods may seem like asking for an avalanche of bugs, but as the return type of
== is boolean, while for === it is Rep[Bool]. Therefore, the most bugs should be caught at
the compile-time.

1Rep[T] is called a phantom type. A phantom type is a type whose argument type is not related to any
component. Indeed, a Rep[Int] object does not contain an integer but only a representation of something that
behaves a little like an integer.

2Although integers are not an algebraic field, Breeze’s Field is defined for them as well, with integer division.
According to the documentation “Not a field, but whatever.”
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3.5. Modular Architecture
Note that in order to provide an additional functionality to representations of certain type
we provide additional methods in independent implicit classes rather than directly extend
the Rep class. The argument type T in Rep[T] effectively becomes the single source of truth
regarding operations available to expressions of type T.

3.6. Drawbacks of the Pure Functional Approach
Consider the following example:

val a: Rep[Int] = 1
val b: Rep[Int] = 2
val c = a + b
c * c

IR built for this example will be larger expected:

Apply(∗)

Apply(+)

Literal(1) Literal(2)

Apply(+)

Literal(1) Literal(2)

Expression a + b would be evaluated twice, following a call-by-name policy, while a call-
by-value is preferred. While this still produces a correct program (under the assumption of
functional purity), it clearly is suboptimal and would cause serious performance penalties in
case of more complicated expressions. A frequent remedy for code generation DSLs mentioned
in LMS [Rom12] is let insertion – inserting let bindings in strategic places. Since Relaks does
not perform code generation at the time and its representation does not include blocks or
statements, we propose a slightly different approach based on the foundation laid out in LMS.

3.6.1. Graph Intermediate Representation
From the tree we will switch to a directed acyclic graph (DAG) IR. We define a following
trait extending DSL’s functionalities.

1 trait Symbols {
2 class Sym extends Atom {
3 val name: Int
4 override def productElement(n: Int): Any
5 override def productArity: Int
6 override def canEqual(that: Any): Boolean
7 override def equals(other: Any): Boolean
8 override def hashCode() = name.hashCode()
9 }

10

11 private var definitions = Map.empty[Sym, Expression]
12 private var symCounter = -1
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13

14 object Sym {
15 def apply(name: Int): Sym
16 }
17

18 protected final def fresh: Sym = {
19 symCounter += 1
20 Sym(symCounter)
21 }
22

23 protected final def freshRep[T](typ: TType): Rep[T]
24

25 private def saveDefinition(sym: Sym, expression: Expression) : Unit = {
26 definitions += ((sym, expression))
27 }
28

29 protected def findDefinition(sym: Sym) : Option[Expression]
30

31 implicit final def toAtom(expression: Expression) : Atom =
32 expression match {
33 case sym: Sym => sym
34 case _ =>
35 val sym = fresh(expression.tpe)
36 saveDefinition(sym, expression)
37 sym
38 }
39 }

Listing 2: Symbols
We begin by defining a new IR node.

…

Atom

Sym

Symbol (abbreviated Sym) represents a “symbolic link” to an expression. Associations are
stored in a hash map (line 11.) for efficient retrieval. It is identified by an integer “name”.
Each time a new symbol is created a global counter is incremented (lines 18. - 21.) so that
the names are unique. Additional implementations of methods from the Product trait are
there to simplify IR traversal – accessing a symbol would transparently follow its symbolic
link. By making a small modification to Rep’s definition from section 3.3 we can force Syms
to be created for each new Rep:

trait Rep[+T] {
val tree: Atom

}
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No additional effort from the programmer’s perspective is required – from now on each
expression that is not an Atom will be automatically converted to a Sym by an implicit function
(line 31. of listing 2).

For convenient pattern matching on the IR nodes we define the following object:

object /> {
def unapply(expr: Expression): Option[(Option[Sym], Expression)] = {

val symOpt = expr match {
case s: Sym => Some(s)
case _ => None

}
findDefinition(s).map(followed => (symOpt, followed))

}
}

Scala’s compiler desugars match expressions to calls to an .unapply() method. Whenever
that method returns an option of a two-element tuple, it can be used as an operator. Using
our object pattern matching a symbol linking to an expression has a pleasant syntax:

{ case Some(sym) /> expr => ... }

Whenever we do not care about the Symbol (and that is often the case) it becomes even
simpler:

{ case _/> expr => ... }

Therefore we can still use companion objects generated by IR nodes’ case classes with
just a little additional effort.

3.6.2. Advantages of the Graph Representation
Our representation from the beginning of section 3.6 will now look like this:

Apply(∗)

1 1

1

Apply(+)

Literal(1) Literal(2)

…
definitions

We will solve the call-by-name/call-by-value problem while implementing an interpreter
in chapter 6. Thanks to Symbols it will be possible to rewrite the definitions map, replacing
arbitrary expressions with partially computed results, while interpreting the IR. This way all
subsequent references to the same symbol will not evaluate the linked subtree again.

The common subexpression elimination problem can be solved with just a little modifi-
cation to the Symbols trait. By adding a reverse hash map Expression → Sym to the code in
listing 2 we can implement a findOrReplace(e: Expression) method that does not allow to
link the same expression with two different symbols. Expressions will be hash-compared – in
the case of Product subclasses two instances’ hashes are equal if and only if their elements’
hashes are equal.
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3.6.3. Modular Architecture One More Time
In order to avoid polluting the global scope with mutable objects, the code in listing 2 is
wrapped in a Symbols trait. Therefore any code making use of the object and classes defined
within this trait must import it into its parent scope. By applying this idea to other extensions
and modules we can create a set of traits that the developer can mix in at will in order to
import desired functionalities. This design allows for easier testing, higher extensibility and,
with the help of Scala’s visibility modifiers (private, protected, etc.) reduced pollution of
the scope. Whne, for example, the numeric and ordering extensions described in section 3.4
are needed, the following pattern can be used:

object Program extends NumericExtensions with OrderingExtensions
import Program._
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Chapter 4

Queries in Relaks

SQL is the lingua franca of databases and data warehouses. Its declarative paradigm allows
for abstracting over implementation details and concentrating on the desired outcome of a
query. And for many databases the implementations differ in more than details – the same
queries can be run on an in-process embedded database sqlite [HK07] and software such as
Spark [Zah+10] or Pig [Apa15] running on clusters of computers.

We find declarative query approach well suited to performing optimization experiments.
First, the implementation details of an hyperparameter optimizer can be hidden. With
a reasonable common interface, optimizers can be swapped in and out at will to perform
different optimization scenarios. Second, not concentrating on details of how the experiments
are performed increases developer’s productivity without sacrificing too much performance.
Optimizations such as parallelization and caching can be implicitly provided by the query
language’s representation. Third, a programmer would often want to explore more than
just the “best” classifier, the top result of an optimization. She might be interested in a an
algorithm that performs best under certain resource requirements such as time or required
processing power and memory, factors that are not easy to introduce in an error function.
The insights derived from the full record of an experiment can be useful too – see [BV07] and
section 1.3.1 on Experiment Databases. Treating experiments and their results as databases
makes them an easy target for analysis using SQL queries, a task and a language many
developers are already familiar with.

Relaks’ implementation of LINQ focuses on hyperparameter tuning experiments, but it
is not its only purpose. In later chapters we will present an extension that will allow Relaks
to generate some SQL code and submit queries to database engines.

4.1. LINQ

Ray Boyce and I hoped that SQL would have an impact on the database industry,
but its impact did not come in the way we expected. Ray and I thought that we
were developing a language that would be used mainly by ”casual users” to pose ad
hoc queries for decision support applications. We were trying to make databases
accessible to a new class of users who were not trained computer scientists. We
expected to see SQL used directly by financial analysts, urban planners, and
other professionals who needed access to data but did not want to write computer
programs. These expectations proved to be too optimistic.

D. Chamberlin, one of the authors of SQL [Bia+09]

23



Language Integrated Query (LINQ) [MBB06] was first introduced by Microsoft in 2007 to
C#. Its main goal was to bridge the gap between a general-purpose programming language
and querying the database. Originally a string containing the SQL command would be sent
to a database and then a wrapping library such as JDBC would be used to retrieve the results.
This approach proved to have many flaws – it was necessary for programmer to learn and use
two languages instead of one, processing results retrieved that way was prone to bugs, type
information was lost etc. Furthermore serious security flaws such as SQL injections [HVO06]
were exposed.

Object-relational mapping frameworks were introduced in order to better associate database
entities with their representation in the host code – the SQL syntax was replaced with specific
framework’s syntax.

LINQ’s approach is different – its goal is to bind SQL-like syntax to a similar representa-
tion available natively in the host language and later translate it to a target language, such
as SQL or GPU code. Target code would then be executed and results wrapped in a native
collection type.

4.1.1. LINQ in Scala
Since its introduction LINQ has been implemented in many programming languages, includ-
ing Scala. Slick [Typ15; Vog11] is among the most popular. It offers a type safe translation
to queries for most popular SQL databases (such as PostgreSQL and MySQL) along with
execution and results fetching. Slick also includes support for queries modifying the database,
e.g. INSERT and UPDATE. A sample Slick expression looks like this:

coffees.map(_.name).filter(_.price < 10.0)

Listing 3: Slick Query, source: [Typ15]

It is equivalent to a SQL query:

select NAME from COFFEES where PRICE < 10.0

However, the developer is required to provide an explicit schema specification, akin to an
object-relational mapping:

class Coffees(tag: Tag) extends Table[(String, Double)](tag, "COFFEES") {
def name = column[String]("COF_NAME", O.PrimaryKey)
def price = column[Double]("PRICE")
def * = (name, price)

}

val coffees = TableQuery[Coffees]

Automatic schema information generation is possible – it involves code generation and
requires connection to the database at compile-time.

After careful consideration we have decided to implement a LINQ version tuned to the
specific need of Relaks for a number of reasons.

First, slick’s verbose schema definitions would be a poor choice for queries on objects
managed by the JVM – this is the case with Relaks’ experiment specification. Those objects’
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types are already known by the compiler – as we will see later in this chapter schemas can
be figured out automatically.

Second, fully typed schemas are not well suited for machine learning datasets either. As
mentioned before, Relaks’ LINQ can be used to query database engines. Machine learning
data sets, this feature’s main area of interest, are unlike application databases targeted by
Slick. Dimensionality of data sets for machine learning can be very high. Explicitly naming
and typing tens of columns is unfeasible. Instead, Relaks allows working with partially typed
data sets and mapping subsets of columns to vectors.

Third, Slick’s focus is on cooperating with databases. Its unique features like handling
NULLs and database management queries are not required by Relaks’ immutable and fully
typed with Scala’s type system data sets. Furthermore, while the LINQ frontend API is
rich and well-documented, its backend, including the IR, would be difficult to extend beyond
query generation, especially considering the hyperparameter optimizers’ interface introduced
in chapter 5.

4.2. Implementation in Relaks
As mentioned earlier, Relaks’ LINQ implementation can be used both to construct an exper-
iment and query a database. In all cases mostly the same set of IR nodes and manipulation
techniques is used. As we have have established a framework for optimization just yet, in the
following sections we will use an example database to better explain presented concepts. It
consists of two tables, stored in CSV files on a disk:

COF_NAME SUP_ID PRICE
Colombian 101 7.99
French_Roast 49 8.99
Espresso 150 9.99
Colombian_Decaf 101 8.99
French_Roast_Decaf 49 9.99

(a) coffee.csv
SUP_ID SUP_NAME ZIP
101 Acme, Inc. 95199
49 Superior Coffee 95460
150 The High Ground 93966

(b) suppliers.csv

Table 4.1: An example database [Typ15]

4.2.1. Staging Tuples
Since we want statically typed queries without explicitly providing an object mapping, we
would need another abstraction over tables and rows. We propose (heterogeneous) tuples as
the representation.

Scala’s standard library does not provide any abstraction over tuples’ arity. Tuples with
different number of elements belong to distinct classes: Tuple1, Tuple2, …, Tuple22 and their
common superclass is Product. Not only tuples inherit from Product – another example are
generated case classes.
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Traditional way of working with tuples in general was either code generation (e.g. see
[Twi15a]) or the mundane act of writing code for each of the 22 tuple classes. We, however,
are going to use the shapeless library for Scala [Sab+15] that, among others, introduces
heterogeneous lists (hlists), type-preserving operations on those lists and means of converting
back and forth between them and Tuples of arbitrary arity.

We begin by extending the IR with a new node:

sealed case class TupleConstructor(tuple: Vector[Expression], names:
Vector[String]) extends Expression↪→

…

Expression

TupleConstructor

And this is everything we need! As we will see shortly, accessing the tuple’s elements will
be performed at compile-time of the meta-language.

Our tuples will have names – a useful feature for representing rows in a table.
In order to represent a TupleConstructor expression we are going to need new types.

sealed trait Tuple
sealed trait Tup[+H <: HList] extends Tuple
sealed trait UntypedTup extends Tuple

Tuple and its subclasses are empty types. They do not provide an implementation – they
will never be instantiated and the only information they convey is their type. We do not
want to associate them with a concrete table row container implementation – at least not
just yet.

We define operations on typed tuples:

trait TupleExtensions extends Symbols {
implicit class TupleOps[B1 <: HList](val arg1: Rep[Tup[B1]]){

def apply[T](i: Nat)(implicit toInt: ToInt[i.N], at: At.Aux[B1, i.N, T]): Rep[T]
}

}

.apply() can extract a correctly typed representation of tuple’s element along with an expres-
sion from a TupleConstructor node. Nat is a type-level natural number used by shapeless. It
can be automatically converted using macros from an Int literal1 during compile-time. The
Nat type can then be used to get the type of a correct element from the hlist present in tuple
representation’s type.

We also define an object useful for pattern matching and “unpacking” tuples of arbitrary
length. Its signature is a lot more complicated – at this level of Scala’s type system ex-
ploitation using implicits is like programming a simple logic program2 with a not-so-friendly

1By an “Int literal” we mean an integer explicitly written in the source code. For example just (1) is such
literal, but (1 + 1) or val a = 1; (a) are not. This is a requirement of the macro system - concrete values
have to be available at the compile-time.

2In fact it is even possible to specify negation using implicits. Yet Scala’s type system, athough powerful,
is not equivalent to logic programming lanuages such as Prolog. For more information see http://kralikba.
web.elte.hu/implicits0.html#there-is-no-prolog-in-your-scala
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syntax. Therefore, from now on we will not post them in full, but rather concentrate on their
contribution to Relaks’ framework.

object Tup {
def unapply[T <: HList, ..., TUPL <: Product](r: Rep[Tup[T]])(implicit ...):

Option[TUPL]↪→

}

TUPL is a Scala Tuple corresponding to T hlist type. The method extracts all expressions
from the IR node and can be used in a friendly syntax for unpacking every element in a tuple
with correct types:

val tuple: Rep[Tup[Int::String::Boolean::HNil]] = ...
val Tup(one, two, three) = tuple

The last element is lifting Scala’s tuples to an IR, similar to lifting Scala’s integers to
Literal nodes in section 3.3. Again, an implicit conversion method is provided.

One of its important features is unifying the “shapes” of tuple’s types. Tuples staged into
Relaks’ object-language can be of mixed types, some elements already Reps and some requiring
a conversion. In order to construct the IR node we need all elements to be lifted into rep-
resentations. Additionally, we would not want distinct tuple types like Tup[Int::Int::HNil]
and Tup[Rep[Int]::Int::HNil], since they essentially mean the same thing. What is more,
Scala’s compiler is unable to perform a two-step implicit conversion, so our staging method
must account for objects that are already lifted intro representations and those that are plain
Scala values.

To solve this, first we use shapeless’ polymorphic functions to map all elements of the
tuple to Reps.

object asRep extends Poly1 {
implicit def lifted[T <: Rep[_]] = at[T](x => x)
implicit def unlifted[T](implicit c: T => Rep[T]) = at[T](x => c(x))

}
//example:
implicitly[Mapper.Aux[asRep.type, Rep[Int]::Int::HNil, X]] //X becomes

Rep[Int]::Rep[Int]::HNil]↪→

Implicit conversions are used to perform the mapping, including a special identity conversion,
when the object already is a representation. Whenever an implicit conversion is not present,
Relaks’ tuple construction fails – some of the tuple’s element cannot be automatically staged.

Then, for each element type of the output hlist, Rep[T] becomes just T.

trait UnliftType[-L <: HList, M[_]] {
type Out <: HList

}
object UnliftType {

def apply[L <: HList, M[_]](implicit unlift: UnliftType[L, M]) = unlift
type Aux[L <: HList, M[_], R <: HList] = UnliftType[L, M] { type Out = R }

implicit def unliftType[H, L <: HList, R <: HList, M[_]]
(implicit ev: Aux[L, M, R]) :
Aux[M[H] :: L, M, H :: R] =
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new UnliftType[M[H] :: L, M] { type Out = H :: R }

implicit def unliftNoType[H, L <: HList, R <: HList, M[_]]
(implicit ev: Aux[L, M, R], e: H =:!= M[T] forSome { type T }) :
Aux[H :: L, M, H :: R] =

new UnliftType[H :: L, M] { type Out = H :: R }

implicit def unliftNil[M[_]]: Aux[HNil, M, HNil] =
new UnliftType[HNil, M] { type Out = HNil }

}
//example:
implicitly[UnliftType.Aux[Rep[Int]::Rep[Int]::HNil, X]] //X becomes Int::Int::HNil

Taking this step after conversion to Reps is important from the perspective of type declara-
tions’ conciseness. We could as well type Tup[Rep[Int]::HNil] but omitting the Rep makes
the whole expression more compact. Note that this is a “weird” operation from an objective
language programmer’s perspective. It makes sense only in the case of phantom types.

It is possible to either stage a plain Scala tuple and automatically assign the names or
define names using an “as” syntax.

class TupleField[T](val t: T, name: Symbol)
class AnyAs[T](val t: T) extends AnyVal {

def as(name: Symbol) = new TupleField(t, name)
}
//example
(value1 as 'val1, value2 as 'val2)

Scala’s Symbol here is not to be confused with Relaks’ Sym. Symbol is essentially a String, the
only difference being that it can be defined with just a single apostrophe, which makes for a
more concise syntax.

The implicit conversion method for staging tuples of TupleFields collects the names and
then performs the same operations as the previous conversion function. For consistency
the plain tuple conversion function automatically specifies placeholder names for the tuple’s
elements. These are not meant to be used directly – whenever a developer should need to
access tuple’s element by name, she is supposed to assign it a meaningful name.

4.2.2. Peeking Inside Functions

Before we can implement LINQ, we will need one more abstraction. All operators from
Scala’s standard collection library take a higher order function as an argument. Filtering
is performed with a function of type T => Boolean, mapping takes a A => B etc. In order
to mimic this functionality we would need a way of working with higher order functions in
Relaks. Unlike the previous extensions we will not be staging functions directly. The idea is
to reuse Scala’s function instead. To give an example:

val f: Rep[Int] => Rep[Boolean] = i => i > 10

Note that a staged function would have have a Rep[Int => Boolean] type. What happens
when we call this function? An example call f(5) has the following representation:
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Apply(>)

1

Literal(5)

Literal(10)

Where 1 is a Sym and other Syms were skipped for clarity. The function is “inlined” during
the meta-language’s run-time. Calling the function with a fresh (not assigned to anything)
Sym gives us a generic representation that may be later filled in with a value when we link
something to the fresh Sym. By reusing Scala’s functions we are getting higher order functions
in our meta-program at almost no cost. In order to be able to call them we would need to
store just the inlined representation and the name of the Sym(s) used to inline it. A class
called Generator, which will store those Syms will be introduced in the next section.

On a side note, recursion is problematic – inlining a recursive function at the meta-
language run-time would cause stack overflow. Fortunately, we will not be needing recursion
in our LINQ implementation.

4.2.3. Staging Queries
With everything in place we can finally introduce a set of operations on collections of tuples –
tables. Our implementation includes only a subset of the features of LINQ. Relaks supports
queries created with comprehensions (projection and filtering), sorting, limiting and skipping
records and very simple aggregations.

As usual, we will begin by introducing a few more IR nodes.

sealed trait Query extends Expression
sealed trait SourceQuery extends Query

trait GeneratorBase

sealed case class LoadTableFromFs(path: String) extends SourceQuery

sealed case class Transform(generator: GeneratorBase, table: Atom, select: Atom)
extends Query↪→

sealed case class Limit(table: Atom, start: Atom, count: Atom) extends Query
sealed case class Filter(generator: GeneratorBase, table: Atom, filter: Atom)

extends Query↪→

object OrderBy {
sealed trait OrderDirection
object Asc extends OrderDirection
object Desc extends OrderDirection

}

sealed case class OrderBy(table: Atom, ordering: Vector[FieldWithDirection])
extends Query↪→

sealed case class Aggregate(fun: Aggregator, query: Atom) extends Expression
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sealed trait Aggregator
object Aggregator {

object Avg extends Aggregator
}

sealed case class Pure(value: Atom) extends Expression

Listing 4: Query IR Nodes

…

Expression

Query

SourceQuery

LoadTableFromFs

Transform Limit Filter OrderBy

Pure Aggregate

We will present them, along with extensions used for IR manipulation one by one. We
will also need new empty types to represent LINQ expressions:

sealed trait Table
sealed trait UntypedTable extends Table
sealed trait TypedTable[+T] extends Table

Sources

SourceQuery is a base class for representations of tuple producers. LoadTableFromFs is one
such producer. It represents the operation of reading a sequence of tuples from a filesystem
source. To read table 4.1a we would use the load method:

trait TableDefs extends Symbols {
def load(path: String): Rep[UntypedTable]

}
//example
val coffeeTbl = load("coffee.csv")

Note that the schema of a table in a CSV file is unknown. Therefore, the returned
representation is of UntypedTable type. Then, we can either provide a schema for our table
and apply fully typed operations to the representation, or use one of the untyped or partially
typed manipulators.

Schema

An implicit conversion for objects of Rep[Table] type (which includes both Rep[UntypedTable]
and Rep[TypedTable[...]]) defines an .apply() method used to provide a schema and gener-
ate an implicit projection. The method takes a tuple of TypedField[T] objects as an argument.

The following query represents a fully typed table 4.1a.
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sealed case class Field(sym: Symbol)
final class TypedField[T](sym: Symbol) extends Field(sym)
final case class FieldWithDirection(field: Field, direction: OrderBy.OrderDirection)
//example
val tf: TypedField[Double] = 'price.::[Double]

Listing 5: Field and TypedField definitions. FieldWithDirection is used by the OrderBy IR
node

val typedCoffee: Rep[TypedTable[Tup[String::Int::Double::HNil]]] =
coffeeTbl('COF_NAME.::[String], 'SUP_ID.::[Int], 'PRICE.::[Double])↪→

Type arguments are extracted from TypedField objects and used to construct a hlist and
then a proper Tup type. A TypedTable Rep is returned, representing a simple projection,
mapping table’s columns according to the provided schema.

Transformations

Transformations are operations that apply a mapping function to each tuple in a table. Here
a projection is a special case of a transformation where the mapping function is a permutation
of a (possibly improper) subset of the input tuple.

1 trait TableExtensions extends Symbols {
2 class Generator(val symsToFields: Map[Sym, Symbol], syms: Option[Vector[Sym]] =

None) extends GeneratorBase↪→

3

4 trait TupleGeneratorImpl {
5 protected def tupleGenerator[F <: HList](fields: Vector[Field]): (Generator,

Rep[Tup[F]])↪→

6 }
7

8 implicit class TypedTableOps[H <: HList](arg: Rep[TypedTable[Tup[H]]])
9 extends TupleGeneratorImpl {

10 lazy val fields: Vector[Field] = outputFields.apply(arg.tree)
11

12 def flatMap[T <: HList](f: Rep[Tup[H]] => Rep[TypedTable[Tup[T]]]):
Rep[TypedTable[Tup[T]]] = {↪→

13 val (gen, tuple) = tupleGenerator(fields)
14 val inlined = f(tuple)
15 val expr = Transform(gen, arg.tree, inlined.tree)
16 new Rep[TypedTable[Tup[T]]] {
17 override val tree = expr
18 }
19 }
20

21 def map[T <: HList](f: Rep[Tup[H]] => Rep[Tup[T]]) = {
22 flatMap(f andThen SingleRow.apply)
23 }
24 }
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25

26 object SingleRow {
27 def apply[T <: HList](t: Rep[Tup[T]]): Rep[TypedTable[Tup[T]]]
28 }
29 }

First we define the Generator class (see section 4.2.2). As the BaseGenerator was defined
in the global scope, it had no way of accessing the Sym type. Here we provide a concrete repre-
sentation – a mapping from Syms used to inline a function to their names in a corresponding
tuple with an optional Vector specifying their order.

.flatMap() (line 12.) is the basic function for manipulating collections and containers in
Scala. Unlike .map() it expects the mapping function to explicitly create a new container
instance – such as a nested query in our context.

In our implementation a Generator and a corresponding (staged) tuple is created first.
The tuple is then supplied as an argument to the provided mapping function (here f), creating
an inlined representation, with arguments as “holes” to be later filled in by linking the Syms
stored in the Generator. A new Transform node is returned.

In order to construct a Generator we need to traverse the IR searching for the last
Transform node – the code in line 10. returns a list of Fields that are currently available.
IR traversal and attribution will be covered in chapter6. On a side note, supplying the list
of Fields would also be possible by extending the Rep class and passing the list along when
creating a new Rep object. We find our design decision superior though – having the IR as the
single source of truth contributes to greater clarity and higher maintainability of the code.

.map() (line 21.) can be defined in terms of .flatMap(). SingleRow.apply() wraps a tuple
IR in a Pure node, returning a TypedTable representation.

The following query returns a table of coffee blend names with corresponding prices,
including a (moderate) vendor margin.

typedCoffee.map({ case Tup(name, _, price) => (name as 'blendName, (price * 1.2) as
'price) })↪→

Alternatively we can also write

typedCoffee.map(row => (row(0) as 'blendName, (row(2) * 1.2) as 'price))

Filtering

We further extend the TableExtensions trait.

class ProjectionFilter[In <: Rep[Table], Out](arg: In)(implicit asCmp:
BuildComprehension[In, Out])↪→

extends TupleGeneratorImpl {
def filter[P <: Product, F <: HList](fields: P)(f: Rep[Tup[F]] =>

Rep[Boolean])(implicit ...): Out↪→

}

.filter() from ProjectionFilter is able to work with Typed and Untyped tables alike.
As the first argument it takes a subset of fields to which the filtering function is applied.
Then it generates the proper correct type similarly to the schema specification function,
computes a representation of the filtering function and returns a Filter node wrapped in
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a representation of the same type as the current expression. ProjectionFilter always re-
turns a table of the same type. The signature is a little more complicated than in previous
cases: we need a BuildComprehension factory that creates a new representation of type Out
given an IR node. We choose which factory to fetch based on the type of current expres-
sion. Instances of type BuildComprehension[Rep[UntypedTable], Rep[UntypedTable]] and
BuildComprehension[Rep[TypedTable[Tup[H]]], Rep[TypedTable[Tup[H]]]] for each hlist H
are implicitly defined.

Of course a fully typed version of .filter() is provided as well. Its implementation is
very similar to the untyped version.

The following query looks for coffee provided by a specific supplier, with prices below 8.0.

coffeeTbl.filter('SUP_ID.::[Int], 'PRICE.::[Double])({case Tup(sup, price) => sup
=== 101 && price < 8.0})↪→

Its typed alternative would look much alike.

typedCoffee.filter({case Tup(_, sup, price) => sup === 101 && price < 8.0})

The version working on Untyped tables really shines in the case of data sets with many
columns, where specifying the schema would be very time-consuming. For example, in such
case the LINQ syntax can be used to do some initial filtering on one or two attributes and
then the remaining data would be input to a pipeline more flexible with respect to the types.

Sorting and limiting

Two more additions to the TableExtensions trait are introduced, with semantics similar to
the ProjectionFilter.filter() method.
implicit class LimitOps[In <: Rep[Table], Out](arg: In)(implicit asCmp:

BuildComprehension[In, Out]) {↪→

def limit(count: Rep[Int]): Out
def limit(start: Rep[Int], count: Rep[Int]): Out

}

implicit class OrderByOps[In <: Rep[Table], Out](arg: In)(implicit asCmp:
BuildComprehension[In, Out]) {↪→

//orderBy's argument is a tuple of FieldWithDirection elements
def orderBy[P <: Product](fields: P)(implicit ...): Out
def orderBy(field: FieldWithDirection): Out = orderBy(Tuple1(field))

}

Simple aggregations

At this moment only the average function is implemented as an aggregation.
implicit class AvgTableOps[T](arg: Rep[TypedTable[Tup[T :: HNil]]])(implicit conv:

Injection[T, Double]) {↪→

def avg: Rep[Double] = {
new Rep[Double] {

val tree: Atom = Aggregate(Aggregator.Avg, arg.tree)
}

}
}
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Unlike previous functions, .avg returns a single value instead of a table. Injection[T,
Double] type class is provided by Twitter’s Bijection library [Twi15b]. It witnesses a conver-
sion between type T and a Double.

For-comprehension syntax

Supporting methods .map(), .flatMap() and .filter() is enough to take advantage of Scala’s
for-comprehension syntax.

The code below is simply desugared to the previously seen vendor margin example.

for (row <- typedCoffee) yield (row(0) as 'blendName, (row(2) * 1.2) as 'price))

Note that more complicated queries are also possible. Specifying nested queries seems
particularly natural with this syntax.

val suppliers = load("suppliers.csv")('SUP_ID.::[Int], 'SUP_NAME.::[Int])
for {
coffee <- typedCoffee
supplier <- suppliers if (supplier(0) === coffe(1))

} yield (coffe(0), supplier(1))

The returned representation includes a nested query and a filter node, as expected. Relaks’
SQL interpreter implementation does not use hash-joins or indexes, therefore evaluating the
nested query would take O(m × n) where m and n are the sizes of tables 4.1a and 4.1b.
Naively submitting such queries to a SQL backend would cause a query avalanche [Sch+10],
resulting in an amount of queries bound to the size of the data. Two solutions to this problem
will be proposed later, one leveraging the Sym cache/store system (section 7.3), and the other
involving more thoughtful SQL code generation (section 6.3).

For-comprehension desugaring process has one quirk.

for (row: Rep[Tup[String::Int::Double::HNil]] <- typedCoffee) yield (row(0) as
'blendName, (row(2) * 1.2) as 'price))↪→

Whenever we explicitly provide a type for a row, either for clarity or to help the IDE, an
isInstanceOf call is included. The code in the last example will be desugared to

typedCoffe.withFilter(_.isInstanceOf(Rep[Tup[String::Int::Double::HNil]])).map(...)

Fortunately, an implicit conversion function for staging for boolean values should be present,
so the argument of withFilter will have the correct [Rep[Tup[...]] => Rep[Boolean] type.
The isInstanceOf will be performed at the multi-stage program compile-time though, result-
ing (most likely) in an unnecessary filter operation with a Literal(true) condition. It should
be removed either as a special case of the filtering function, or in a constant folding phase of
the multi-stage program.

4.2.4. Improving the Syntax
It is possible, using the shapeless library and dynamic objects in Scala, to have a fully stati-
cally typed, call-by-column-name version of the tuple representation. Shapeless implements
Records, a heterogeneous version of Map class from the standard library, allowing the user to
specify keys for the Record like she would input String or Symbol keys for a Map. A schema
or names specified on a tuple could be translated to properties (accessed with the dot syntax)
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on a dynamic object, resulting in LINQ queries looking similar to Slick’s without the hassle
of defining object mappings.

An experimental implementation proved that, although valid and compilable, this syntax
has absolutely no support from the leading Scala IDEs (IntelliJ and Eclipse). Their macro and
dynamics support is limited and can sometimes cause problems even in the less demanding
implementation presented in this chapter. Furthermore, according to the shapeless’ GitHub
pages [Sab+15], even fairly small Records carry large performance penalties. Even though
those are compile-time and do not affect the running program, the possibility to iterate
quickly through different versions of a solution or implement an interactive version of Relaks
in the future would be greatly diminished. Therefore, we have decided to keep the little
less pretty but more tool-friendly syntax, at least until the macro and dynamics issues are
resolved.
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Chapter 5

Hyperparameter Tuning

In the previous chapters we have looked into the compile-time phase of the multi-stage pro-
gram. The following sections will be a short break from the IR representation and manipu-
lation methods. We will take a closer look at hyperparameter tuning algorithms, implement
a framework in pure Scala for working with them and prepare for plugging it into Relaks.

5.1. Hyperparameter Tuning as Iterative Refinement

Bayesian optimization for hyperparameter tuning described in section 1.2.3 is a promising
method of efficiently finding a good configuration [SLA12; EFH13]. In our tuning framework
we will concentrate on these methods.

Improving the hyperparameter space model can be viewed as an iterative refinement
process – with each iteration the model becomes more accurate at portraying the reality being
modeled. The underlying procedure is fairly basic: acquire a new set of hyperparameters,
evaluate the configuration, update the acquisition function, repeat.

Iterative refinement loop

ML Algorithm

ModelConfiguration

update

generate

Results

Moreover, an iterate-update loop can be used to describe some model-free tuning meth-
ods as well. For example, for the grid search algorithm the update function would be just
a no-op and configuration acquisition would simply return the subsequent elements of all
hyperparameters’ cartesian product.

37



5.2. Hyperparameter Tuning as a Stream
The iterative tuning process generates a configuration of hyperparameters at each iteration.
Processing configurations (evaluating the ML algorithm and computing error) is incremental
– the entire list of settings is (generally) not known beforehand. Ideally the model should
always be updated before the next set of parameters is generated – the quality of the configu-
rations suggested for evaluation depends on how much information about the hyperparameter
space has been gathered. Additionally, the tuning process can be stopped at any point, e.g.
when the user decides the configurations are good enough, too much time has been spent
or subsequent evaluations’ improvement is starting to get really small. At this point the
iterative process should be halted immediately and any allocated resources should be freed.

All those requirements are met by streams with back pressure, a functional solution for
working with “live” streams of data. In Relaks’ implementation we will be using scalaz-
stream [Chl+15] library, which supports asynchronous I/O, concurrency, resource safety and
advanced stream manipulation and composition.

5.3. Stream Processing Basics
The basic type in scalaz-stream is Process[F, A]. It represents a (possibly infinite) stream
of As wrapped in a monadic context provided by monad F[_]. Most often we will have
Task provided by scalaz as our monad. Task’s monadic context is that of an asynchronous
operation that can fail (throw an exception) – having something of type Task[A] means that
A may or may not exist yet, and if it is not present, the operation has either failed or not
finished yet. Task is similar to Future from Scala’s standard library, the main difference being
that unlike Future’s, Task’s results are not memoized, therefore the computation will re-run
each time the Task is run.

A stream that produces no output is called a sink. We use it when we are interested only
in an effect it produces, for example writing each element it receives from a stream to a file.
Streams can be either observed by sinks (when they do not alter stream’s elements) or piped
to a sink – in that case all elements are discarded and all that is left are the effects.

Process1 is a stream transducer, used to transform a stream much like Scala’s collection
methods transform an iterable. Streams are piped to Process1 instances.

Process Process1

Sink

Sink

observe

to
pipe

Streams in scalaz-stream support back pressure. It essentially means that the stream will
not process more elements than are requested – the elements are pulled by the user, rather
than pushed from a source. With back pressure we can easily design a scalable and responsive
system without worrying about how the elements are going to be requested and processed in
later stages of development.

Once the stream composition is finished we can run the Process in one of three ways,
depending on what result we are interested in. .run() runs the process purely for its ef-
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fect, discarding all values. .runLog() records all values emitted by a stream as a sequence.
.runLast() discards all emitted elements but the last one.

The following example illustrates concepts introduced in this section.

// a constant, infinite stream of ones wrapped in a Task
val ones = Process.repeatEval(Task.now(1))

// infinite stream of consecutive integers starting from 2
val nat = ones.scan1(_ + _)
val even = nat.filter(_ % 2 == 0) //only even integers
// |> is a shorthand for .pipe
val indians = nat |> process1.lift(_.toString + " little indians")
val stdoutSink: Sink[Task, String] = sink.lift(str => Task.delay(println(str)))
val print = indians.to(stdoutSink)
print.take(5).run.run

The code prints the first five even-numered little indians to standard output while returning
none. The first .run() method returns an object of type Task[Unit]], so the last call to
.run() runs the Task. The effect of println() is captured by a Task, it will be evaluated only
when the Task is run.

Note that scalaz-stream allows transforming a stream as if it were a standard Scala col-
lection. Methods like .filter() and .scan1() are just aliases for piping the stream to ap-
propriate Process1 instances.

5.4. Basic Architecture
We propose a basic interface for the hyperparameter tuning process.

trait BaseOptimizer {
type ParamsSpace = Map[String, NondetParam[Any]]
type Params = Map[String, Any]

trait Optimizer {
def paramStream: Process[Task, Params]
def update: Sink[Task, OptimizerResult]

}
sealed case class OptimizerResult(result: Any, params: Params, time: Long = 0)

sealed class ExperimentStrategy
object StrategyMinimize extends ExperimentStrategy

def apply(maxParallel: Int, spaceDesc: ParamsSpace, strategy:
ExperimentStrategy): Optimizer↪→

}

BaseOptimizer is a factory, it will be extended by concrete hyperparameter tuning backend
implementations. NondetParam is used to describe a hyperparamter’s space. The space can
be described as a continuous range, discrete (integer) range or a “choose one from a list”,
which is a special case of a discrete range. Methods for conversion to hyperparameter tuning
backends’ proprietary formats for specifying configuration are available via type classes.
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The class for communicating with the tuning algorithm, Optimizer, is instantiated by
the .apply() method. It takes a hint to the desired degree of parallelism, a hyperparameter
space description and an optimization strategy as arguments. At the time the only available
optimization strategy is to minimize the result (which presumably is the prediction error).

Optimizer’s paramStream generates a stream of Params – concrete samples from parameter
space – to be evaluated. Results should be piped to update, along with parameters used to
produce them and optionally time of the iteration in milliseconds. Note that the Optimizer
is stateful – updates may potentially come asynchronously at any time and applying them is
meant to be implemented as an effect.

Tuning an algorithm is simple.

def loop(params: Params) = (algorithm(params), params)

optimizer.paramStream.pipe(loop)
.observe(optimizer.update.contramap(getResult))
.pipe(process1.lift(_._1))

Here algorithm() is the algorithm to be tuned and getResult() is a function that con-
structs an OptimizerResult object from an algorithm output and configuration instance tuple.
The update sink merely “observes” the results of an experiment – algorithm’s output is passed
along to further analysis or storage.

5.5. The Grid Search Optimizer
We will use the proposed interface to implement one of the simplest methods of hyperparam-
eter tuning – the grid search (described in section 1.2.1).

object GridOptimizer extends BaseOptimizer {
class GrOptimizer(spaceDesc: ParamsSpace, strategy: ExperimentStrategy) extends

Optimizer {↪→

override def paramStream: Process[Task, Params] = {
// a lazy generator for cartesian product of variable space
def go(acc: Params, rest: Seq[(String, NondetParam[Any])]): Process[Task,

Params] =↪→

rest match {
case Seq() => Process.emit(acc)
case (name, vals) +: tail => vals.view.foldLeft(Process.empty[Task,

Map[String, Any]]) {↪→

(proc, value) =>
proc ++ go(acc + (name -> value), tail)

}
}

Process.suspend(go(Map.empty, spaceDesc.toStream))
}

override def update: Sink[Task, OptimizerResult] = sink.lift(x => Task.now(()))
}
override def apply(maxParallel: Int, spaceDesc: ParamsSpace, strategy:

ExperimentStrategy): Optimizer =↪→
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new GrOptimizer(spaceDesc, strategy)
}

A lazy stream of all possible configurations is constructed from the space description.
Grid Optimizer suggests them for evaluation one by one. The update sink is a no-op.

The discrete range NondetParam instances can generate the space for their parameter.
However, as the space described by a continuous range is potentially infinite, submitting a
continuous NondetParam to the Grid Optimizer raises a runtime exception.

5.6. Concurrency
Although stream processing paradigm is highly sequential, some programs strongly bene-
fit from concurrency. Relaks is one such case – as the tuning algorithms usually have at
least some support for concurrent evaluation, a lot of time can be saved by parallelizing or
distributing computation. Fortunately, scalaz-stream supports concurrency, as long as the
developer is willing to sacrifice the guarantees on the order of computation and some of the
push/pull semantics.

nondeterminsm.njoin(maxOpen: Int, maxQueued: Int)(source: Process[Task,
Process[Task, A]]) is a combinator that enables concurrent processing. It spawns maxOpen
worker threads and executes operations from a Process of Processes on a first-come first-
served basis. Because of the implementation constraints in order to guarantee fairness, stream
elements (or jobs) are prefetched to a queue, whose size is bound by the maxQueued argument.

Parallelizing the Process from section 5.4 is fairly simple.

val processes = optimizer.paramStream.map(params =>
Process.eval(Task(params))
.pipe(loop)
.observe(optimizer.update.contramap(getResult))
.pipe(process1.lift(_._1)))

nondeterminism.njoin(4, 1)(processes)

Here the loop evaluation is processed concurrently by up to 4 threads at the same time. Note
that the return type on njoin is a Process[Task, A]. The combinator takes care of merging
the results back into a single stream (the order of elements becomes nondeterministic), so
that subsequent processing is again sequential.

5.7. Spearmint Optimizer
Spearmint’s implementation [Sno14] comes as a command line Python tool. Once the initial
configuration is provided, the communication happens through an experiment log file. With
each run of the command line tool the model is updated with new entries from the file and
then a new configuration marked as pending is written. The tuned algorithm should then
be run with the pending parameter configuration and its results appended to the experiment
log. Another Spearmint iteration would be run after that in order to update the model and
get another set of parameters for evaluation.

1 object SpearmintOptimizer extends BaseOptimizer {
2
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3 class Spearmint(spaceDesc: ParamsSpace,
4 strategy: ExperimentStrategy,
5 maxParallel: Int,
6 convergeAfter: Int = 10,
7 scriptArgs: String = "--method=GPEIChooser") extends Optimizer {
8 //state
9 private var spearmintPending = Set.empty[Params]

10 private var updatesPending = List.empty[(Params, OptimizerResult)]
11 private var tmpDirectoryPath: Path = null
12 //pending updates or tickets
13 private val updateTicketQueue = async.unboundedQueue[OptimizerResult \/ Unit]
14

15 /**
16 * updates experiment log and runs spearmint
17 * @return spearmint process exit code
18 */
19 protected def runSpearmint: Task[Int]
20

21 protected lazy val initializeSpearmint: Task[Unit]
22

23 protected lazy val paramGenerator: Process[Task, Params] = {
24 val ticketInit: Task[Unit] //initialize ticket queue
25 val init: Task[Unit] = initializeSpearmint.flatMap(_ => ticketInit)
26 val updateWithTicket: Process[Task, Seq[OptimizerResult \/ Unit]] =
27 updateTicketQueue.dequeueAvailable
28 val applyUpdatesOrGetTicket: Process[Task, Unit] = updateWithTicket.flatMap

{...}↪→

29 def getNextParams: Task[Params]
30

31 Process.eval_(init) ++ applyUpdatesOrGetTicket.evalMap(_ => getNextParams)
32 }
33

34 //side effect: stores optimizerResult in updatesPending
35 protected def applyUpdate(optimizerResult: OptimizerResult): Task[Unit]
36

37 /**
38 * reads from experiment log. Side effect: appends to spearmintPending
39 * @return params pending in experiment log or unit if spearmint
40 * requested params that have already been evaluated.
41 */
42 protected lazy val readPending: Process[Task, Unit \/ Params]
43

44 override def paramStream: Process[Task, Params] = paramGenerator
45

46 override val update: Sink[Task, OptimizerResult] =
47 updateTicketQueue.enqueue.contramap(x => x.left)
48 }
49
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50 override def apply(maxParallel: Int, spaceDesc: ParamsSpace, strategy:
ExperimentStrategy): Optimizer↪→

51

52 def apply(maxParallel: Int, spaceDesc: ParamsSpace, strategy: ExperimentStrategy,
53 convergeAfter: Int, spearmintArgs: String): Optimizer
54 }

In our implementation no effects are evaluated eagerly, as they can potentially be compu-
tationally expensive. Temporary directory for Spearmint’s intermediate files and the configu-
ration will not be created until the first element of paramStream is generated. The experiment
log will not be updated and the Spearmint program will not be run until a new set of pa-
rameters is requested from the stream.

Simultaneously the implementation is parallelisable. Experiments’ results are stored in a
(thread safe) queue (line 13.). To ensure that no more than maxParallel configurations are
generated at the same time (e.g. by the prefetching in njoin), we use the“tickets” pattern
familiar in parallel programming design. At the beginning exactly maxParallel tickets are
generated, and in order to generate a new set of parameters with Spearmint the stream
must grab another ticket. After finishing the computation (or encountering a failure), the
process must return the ticket to the queue. At the same time it is important to apply all
available updates before calling Spearmint. Therefore, the updates and tickets are stored
together in updateTicketQueue – tickets are represented by Unit instances and \/ is scalaz’
alias for Either. Before parameters are generated, the updates and tickets are requested in
bulk (line 26.). All updates are then marked for application and any optionally extra tickets
are returned to the queue.

It turns out that some acquisition functions available in Spearmint (e.g. the GPEIChooser
described in [SLA12]) repeatedly pick the same set of parameters. Therefore, after convergeAfter
subsequent evaluations of one configuration the stream raises OptimizerConverged exception.

5.8. Extending the DSL
Before using a tuning algorithm with Relaks, we will need to extend the object-language. We
are going to need additional syntax to define the hyperparameters and the tuning scenario.

//IR nodes
sealed trait HyperparamSpace extends Expression
sealed case class HyperparamRange(from: Expression, to: Exprerssion) extends

HyperparamSpace↪→

sealed case class HyperparamList(s: Expression) extends HyperparamSpace
sealed case class OptimizerResultTable(argTuple: Expression) extends SourceQuery

//new empty type
sealed trait UnfinishedGenTable[T] extends Table

trait HyperparamExtensions extends Symbols with TableExtensions {
sealed trait HasRange[T]
object HasRange {

implicit val intHasRange = new HasRange[Int] {}
implicit val doubleHasRange = new HasRange[Double] {}

}
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object choose extends ToTypedTreeOps {
abstract class Between[T: HasRange] {

val from: Rep[T]
def and(t: Rep[T]): Rep[T]

}
def between[T: HasRange](frm: Rep[T]): Between[T]
def from[T](from: Rep[List[T]]): Rep[T]

}

def optimize[H <: HList, Out](varTup: Rep[Tup[H]]):
Rep[UnfinishedGenTable[Tup[H]]]↪→

}

Three new IR nodes are introduced.
…

Expression

…

SourceQuery

OptimizerResultTable

HyperparamSpace

HyperparamRange HyperparamList

This extension enables defining three kinds of hyperparameters.

val x = choose between 1.0 and 2.0 //continuous range
val y = choose between 1 and 10 //discrete range
val z = choose from List("Mon", "Tue", "Wed") //discrete range

HasRange is a simple method for specifying type constraints for range hyperparameters –
it is possible to create a range configuration only from Integers and Doubles.

Note that those values have “normal” types (e.g. Rep[Int], Rep[Double]), therefore they
can be used anywhere an Integer or Double would be used. val a = x + 5.0 is equivalent to
defining a hyperparameter with range from 6.0 to 7.0. This way virtually any object can be
turned into a hyperparamter space, e.g. val str = "My account balance on " + z + " is
€" + x is a space of strings stating a balance between 1 and 2 € on one of the first three days
of the week.

A syntax for running optimization scenarios is included as well.

optimize (y, str)

This code would tune a three hyperparameter configuration (str is parameterized by two
hyperparamters). Note that the return type of optimize() contains the word “unfinished”.
Indeed, the optimization scenario is incomplete without specifying the error function or a
parameter which should be minimized. We will extend the LINQ syntax to allow defining
the objective and transforming the experiment. To operate on the newly introduced Table
type we will modify the TypedTableOps class defined in the previous chapter to work with any
Typed Table type.
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class TypedTableOps[H <: HList, Out[_ <: HList]]
(arg: Rep[Table])
(implicit mkCmp: BuildComprehensionTyped[H, Rep[Table], Out]) {

The implicit argument BuildComprehensionTyped is similar in concept to BuildComprehension
factory described in section 4.2.3. The main difference is that the Out type is a type of a higher
kind this time, allowing parameterizing the output representation’s type with a hlist. This is
useful for operations that mutate the type of a Table, such as .map() or .flatMap() methods.
Implicit instances for BuildComprehensionTyped exist for TypedTable and UnfinishedGenTable,
allowing both types to reuse the operators defined in TypedTableOps.

In order to create a syntax for defining hyperparameter tuning objective, we will need a
new IR node and another extension to our LINQ framework.

sealed class OptimizeBy(override val table: Atom,
override val ordering: Vector[FieldWithDirection])

extends OrderBy(table, ordering)

trait HyperparamExtensions extends Symbols with TableExtensions {
implicit class UnfinTablOps[H <: HList](arg: Rep[UnfinishedGenTable[Tup[H]]]) {

def by(field: Symbol): Rep[TypedTable[Tup[H]]]
}

}

OptimizeBy is similar to OrderBy node, yet its semantics are a little different – while (some)
tuning algorithms will try to suggest configurations that consequently minimize the optimized
field, in general the output will not be sorted. Nevertheless, defining optimization objective
is just as simple as sorting a Table – all that is needed is the column name, and the optimizer
implementation will take care of the rest.

Once the objective is selected, the experiment will behave just as any other Typed Ta-
ble.
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Chapter 6

Traversing the IR

With the basic set of IR nodes and meta-language methods for manipulating them established,
we can focus on working with the IR representation generated in the meta-language’s run-
time stage of the multi-stage program. We are going to explore three contexts of IR traversal:
static analysis, rewriting and program evaluation.

We are going to make heavy use of Scala’s pattern matching and Kiama1, a library for
language processing in Scala. It contains features such as efficient attribution of IR nodes
and powerful combinators for defining rewriting and traversal strategies based on Stratego
[Vis01], a language for specifying program transformations. With the help of macros and run-
time reflection Kiama integrates seamlessly with IRs based on Scala’s case classes. Although
its main focus is on tree-based IR, with just a few special considerations we can successfully
apply it in our DAG IR.

6.1. Static Analysis for Program Correctness
Some constraints are difficult to express using just the Scala’s type system. For example,
although we require that arguments to optimize() are defined using hyperparameters, the
type of a hyperparameter definition is indiscernible from e.g. the type of a literal. To catch
such errors before the run-time, we will define a simple incremental scaffolding for specifying
rules the program should adhere to.

trait Analysis {
final def analyze(root: Expression): ValidationNel[String, Unit] = {

val ir = new DAGIr(root)
val strategy = Rewriter.collect[List, ValidationNel[String, Unit]] ({

case (expr:Expression) => doAnalyze(expr, ir)
})

strategy(root).reduce { _ *> _}
}
protected def doAnalyze(node: Expression, ir: DAGIr):

ValidationNel[String, Unit] = ().successNel[String]
}

DAGIr is a helper object that constructs a generic traversable representation of the IR.
collect() is a Kiama strategy combinator that traverses the entire IR, collecting output of a

1https://bitbucket.org/inkytonik/kiama
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strategy specified in the argument – here provided by the .doAnalyze() method. The results
are collected in a ValidationNel object – another alias of Either, that stores failures as Lists.
For an error-free program the result would be just a Unit instance – a success. Otherwise
error message strings are collected in a List. The *> operator combines ValidationNels,
concatenating the error lists in case of at least one failure.

Analysis trait is meant to be extended by concrete analysis rules providers, overriding
the .doAnalyze() method and stacking the rules.

trait HyperparamAnalysis extends Symbols with Analysis {
private val optimizerValidation: (Expression, DAGIr) ==> ValidationNel[String,

Unit] = {↪→

case (OptimizerResultTable(tuple), ir: DAGIr) =>
val hyperparams = new Hyperparams(ir)
if (hyperparams.isHyperparam(tuple))

().successNel
else

"argument of `optimize` must be hyperparameterized".failureNel
}

override protected def doAnalyze(node: Expression, ir: DAGIr):
ValidationNel[String, Unit]↪→

= optimizerValidation.applyOrElse((node, ir), Function.const(().successNel)) *>
super.doAnalyze(node, ir)

}

.optimizeValidation() is a partial function restricted to OptimizerResultsTable nodes,
returning success if the node’s argument is constructed with a hyperparameter and failure
otherwise. .doAnalyze() method stacks the partial function with analysis performed in the
superclass. Using Scala’s mixin (trait) composition, multiple analysis rules defined for various
DSL extensions can be stacked this way, creating a modular static checker architecture.
Relaks implements a checker for soundness of column names in LINQ expressions (to analyze
whether a Typed Table’s column name actually refers to something in the current context)
in a similar fashion.

Reporting errors as soon as possible is especially important in the context of long running
machine learning experiments, where a bug at a later stage of the program could waste a lot
of programmer’s time.

6.2. IR Attribution
In the previous listing Hyperparams is a Kiama’s attribute.

class Hyperparams(ir: DAGIr) extends Attribution { self =>
val hyperparamDependencies: Expression => Set[Sym] = attr {

case _ /> OptimizerResultTable(_) => Set.empty
case Some(sym) /> (_: HyperparamSpace) => Set(sym)
case Fresh(_) => Set.empty[Sym]
case _ /> (link) => ir.child(link)

.map(self.hyperparamDependencies)

.foldLeft(Set.empty[Sym])(_ ++ _)
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case _ => Set.empty
}

def isHyperparam(expr: Expression) = hyperparamDependencies(expr).nonEmpty
}

Kiama supports attribute grammars as functions that compute properties of IR nodes
and their context. The results are memoized and, with the help of macros and reflection,
stored directly in the IR nodes. The attributes are automatically reset after an IR rewrite
that might alter their values.

Here .hyperparamDependencies() traverses the IR recursively to construct Sets of Syms
linking to the hyperparameter definitions for a node and its children. The DAGIr object is
required for generic IR traversal, in this case to a node’s subgraph. On a side note, in the
case of Relaks, using attributes that depend on node’s parents should be given a careful
consideration or be avoided entirely – what works well with an AST representation might
sometimes break in the DAG IR context.

6.3. IR Rewriting
Program transformation has many purposes, including desugaring advanced language con-
structs in terms of simple ones and applying optimization rules in order to arrive at a more
efficient solution.

6.3.1. Rewriting LINQ to a Simpler Representation
Working directly with a tree (or DAG) representation of queries is inefficient both from a
cognitive point of view and an efficiency perspective. It is often useful to look at a query
as a whole, as in various contexts the representation is traversed top-down and bottom-up.
Furthermore, the individual operations can interact with each other within a query, producing
a more efficient solution, while their interaction with separate queries has its own laws.

Relaks converts Query subgraphs to atomic logical nodes. Here logical refers to an
operation that could be submitted to a database, modeled after blocks described in [LMS94].
They cannot be directly manipulated by the meta-language.

package relaks.lang.dsl.extensions.ast.logical

sealed trait Comprehension extends Expression
sealed case class LoadComprehension(loadExpression: SourceQuery) extends

Comprehension↪→

final case class SelectComprehension(from: Comprehension,
operations: Vector[QueryOp] = Vector.empty)

extends Comprehension {
//create a new comprehension by appending an operator
def append(queryOp: QueryOp): SelectComprehension

}

LoadComprehension is a simple wrapper for SourceQuery nodes. SelectComprehension
corresponds to a SELECT [operations] FROM [from] SQL query sans GROUP BY instructions.
QueryOp nodes are simplified versions of query transformation nodes defined in section 4.2.3 –
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as they all belong to a single query and are stored as a sequence in the Comprehension node,
the table attribute referring to the subject of a transformation has been dropped.

object QueryOp {
sealed trait QueryOp extends Expression
case class Transform(generator: GeneratorBase, select: Atom) extends QueryOp
case class Filter(generator: GeneratorBase, filter: Atom) extends QueryOp
case class Limit(start: Atom, count: Atom) extends QueryOp
case class OrderBy(ordering: Vector[FieldWithDirection], isExperimentObjective:

Boolean) extends QueryOp↪→

def unapply(expr: Expression): Option[QueryOp] = expr match {
case (op: lang.ast.Filter) => Filter(op.generator, op.filter).some
case (op: lang.ast.Transform) => Transform(op.generator, op.select).some
case (op: lang.ast.Limit) => Limit(op.start, op.count).some
case (op: lang.ast.OrderBy) => OrderBy(op.ordering,

op.isInstanceOf[OptimizeBy]).some↪→

}
}

The logic behind translating Query trees into Comprehension nodes is expressed using
the attribution grammar.

object ComprehensionBuilder extends Attribution {
val comprehension: Expression => Option[SelectComprehension] = attr {

case Some(querySym) /> NextTable(nextSym) =>
val _ /> query = querySym
for {

select <- comprehension(nextSym)
updatedSelect <- query match {

case QueryOp(queryOp) => select.append(queryOp).some
}

} yield updatedSelect
case _ /> (source: SourceQuery) =>
SelectComprehension(LoadComprehension(source)).some

case _ => None
}

}

The tree is traversed top-down, up to a SourceQuery node, where a SelectComprehension
is created. Then the Operation nodes are appended recursively.

A rewriting strategy uses the ComprehensionBuilder attribute to materialize a new logical
node.

def buildComprehensions: Expression => Option[Expression] = {
def buildComprehensionsImpl: Expression ==> Atom = {

case Some(sym) /> _ if ComprehensionBuilder.comprehension(sym).nonEmpty =>
ComprehensionBuilder.comprehension(sym).get

}
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repeat(oncetd(rule[Expression](buildComprehensionsImpl))) andThen
(_.map(_.asInstanceOf[Expression]))↪→

}

Kiama’s combinators are used to apply the simple buildComprehensionsImpl() strategy to
the entire IR. repeat() combinator replays a strategy as long as it succeeds. oncetd() tries to
apply a strategy to the entire IR traversing it top-down and succeeds after the first successful
application.

Repeated application of the strategy can transform Query subtrees located at any depth
– including nested queries. Figure 6.1 depicts applying the strategy to the following code.

val data = load("data.csv")('a::[Int], 'b::[Int])
val nested = load("nested.csv")('c::[Int], 'd::[Int])

val joined = for {
Tup(a, b) <- data
Tup(c, d) <- nested.limit(...)

} yield (a, b, c, d)

joined.filter(...)

Filter

Transform

SourceQuery Transform

Limit

SourceQuery

table select

(a) IR without tranformations (the represen-
tation of val nested is underlined)

Select

Load

SourceQuery

Filter :: Transform

Transform

Limit

SourceQuery

(b) IR after first iteration of the strategy (log-
ical nodes in italics)

Select

Load

SourceQuery

Filter :: Transform

Select

Load

SourceQuery

Transform :: Limit

(c) IR after second iteration of the strategy

Figure 6.1: Applying the buildComprehensions strategy to joined.filter(...) representa-
tion

Note that Relaks’ Syms enable common subquery factorization for query expressions.
While, with a reasonable caching mechanism this property has the potential for improving
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the efficiency, a successful implementation requires careful consideration of query’s backend,
table size etc. It is not within the current scope of the project, but remains an important
future work. Presently a common subquery is split into distinct logical nodes.

SourceQuery

Filter

1

Transform

…

OrderBy

…

Figure 6.2: A representation of two queries with a common child (subquery). It will be
rewritten as two distinct comprehensions.

6.3.2. Rewriting for Efficient Execution
One of the reasons why Relaks is centered around a LINQ implementation is the huge poten-
tial for improving query efficiency by IR rewriting either by predicate move-around [LMS94],
operator merging (e.g. Spark Catalyst in [Arm+15]) or operator specialization. Even though
Relaks implements only a small subset of a query language, multiple optimization rules are
still applicable.

One example would be specializing a frequently seen duet – Order By plus Limit operators.
Whenever there are no intermediate Filter operators between an Order By and Limit nodes
a more efficient Top-K algorithm (based on a priority queue with bound size) can be used
instead of the generic sorting implementation (which is realized by an unbounded priority
queue in Relaks).

Future Work

Ultimately, Relaks should implement a predicate move-around algorithm to push down the
predicates directly into hyperparamter definitions whenever possible. Investigating how use-
ful predicate reordering could be for constraining hyperparameters’ space or automatically
deriving interactions between them2 remains an important future work.

The query avalanche problem (section 4.2.3) is frequently solved by rewriting nested
comprehensions to Join nodes. We have implemented a proof of concept rewriting strategy
for Relaks IR, however due to time constraints and lower usefulness of joins in experiment
databases, it has not been included in the query rewriting phases yet.

6.4. The IR Traversal that Could – the Interpreter
In the previous chapter we have already seen bits that will build the object-program – streams
and stream transducers. In this section we will implement methods that execute instructions
derived from the IR nodes and run Relaks programs.

2Some model-based tuning algorithms such as SMAC [HHL11] support conditional parameters, where one
parameter is active only when another parameter takes values from a given set.
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6.4.1. A Preliminary: Type Materialization
As a typed programming language, Scala requires type information to issue commands to
the JVM. Although it could be derived at run-time using reflection, a simpler and clearer
solution is to store some type information in the IR nodes during meta-language compile
time. We will briefly describe how to extend the current implementation in order to provide
useful type information for the interpreter.

First we will define a basic set of phantom types.

sealed trait TType

//as type parameters are "erased" during Scala's compile-time
//materializing the TypeTag is useful for printing the type and
//for equality checks
sealed abstract class ArgType[T: WeakTypeTag]

(implicit val order: Order[T] = null,
val toText: Injection[T, String] = null)

extends TType

//represents a type supported by Relaks object-language
sealed class LiftedArgType[T] extends ArgType[T]

final class TupType[T <: HList : WeakTypeTag]
(val length: Int, val lowerBound: TType, val childrenTypes: Vector[TType])
extends LiftedArgType[Tup[T]]

//represents a type equivalent to Scala type T
//objects of type T can be directly lifted into Literals nodes
sealed class ScalaType[T: ClassTag] extends LiftedArgType[T]

class ScalaNumType[T : ClassTag : Order : Field] extends ScalaType[T]

object UnknownType extends TType

object ScalaTypes {
val boolType = new ScalaType[Boolean]
val stringType = new ScalaType[String]
val intType = new ScalaNumType[Int]
val doubleType = new ScalaNumType[Double]
val longType = new ScalaNumType[Long]
val anyType = new ScalaType[Any]

}

Along with the essential type information we are storing some useful optional implicit
objects: Order, Field and Injection[T, String] instances. They will become extremely
useful while implementing generic expression evaluators later in this chapter.

We include a new field val tpe: TType for storing the type information in the basic
Expression IR node. Adding type information does not complicate the existing code by much
– some types, such as TupType can be derived automatically from the IR node’s children and
others can be made implicitly available and fetched based on type parameter T in Rep[T].
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6.4.2. The Interpreter
Relaks’ interpreter is structured similarly to the analysis framework descibed in section 6.1.
Various traits providing the interpreter implementation for different language extensions are
stacked together to form a complete language interpreter. Several overridable methods pro-
vide implementation for different classes of expressions in order to guarantee some type safety
of the expected result of the evaluation.

protected def evalComprehensionPartial: Expression ==> Process[Task, impl.Row]
protected def evalExpression(expr: Expression): Any = expr match {

case _/>Literal(v) => v
case Some(sym) /> (expr: Expression) => evalExpression(expr)
case _ =>

throw new NotImplementedError(s"Evaluating $expr not implemented")
}

Query nodes’ interpretetation functions are stacked by overriding the .evalComprehensionPartial()
method. Its return type is a stream of impl.Row objects, which is a common interface for
Tuple expressions evaluation results.

package relaks.lang.impl

trait Row {
def get[T: ArgType](i: Int): T
def get[T: ArgType](name: String): T
def apply(i: Int): Any)
def apply(colname: String): Any
//BrVec is breeze.Vector, ClassTag specializes the Vector with
//a more efficient storage for primitive values whenever possible
def apply[T: ClassTag: ArgType](rng: Range): BrVec[T]

def colNames: Seq[String]
def values: Seq[Any]

}

The concrete implementation of Row trait is chosen by a query backend – we will see a
specialized row type in chapter 7.

As mentioned before, Query Operators are implemented as stream transducers and com-
bined together with Source Queries, which become stream generators. Aggregation and
sorting is implemented using algebird’s Aggregations [Twi15a], where the aggregation objects
form a commutative semiring structure3, so that integrating them with streams is straight-
forward.

def mkOrder(fld: FieldWithDirection): Order[Row]
...
//returns a Process1[Row, Row]
case OrderBy(fields, false) =>

implicit val ordering: scala.Ordering[Row] =
fields.map(mkOrder).fold.toScalaOrdering↪→

3For more information on how semirings fit into databases see [GKT07]
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val aggregator = new UnboundedPriorityQueueAggregator[Row]

process1.lift(aggregator.prepare) |>
process1.reduce(aggregator.reduce) |>
process1.lift(aggregator.present) flatMap { (x: Seq[Row]) =>
Process.emitAll(x)

}

case TopK(fields, skipExpr, countExpr) => //top k specialization mentioned
previously↪→

implicit val ordering: scala.Ordering[Row] =
fields.map(mkOrder).fold.toScalaOrdering↪→

val skip = evalExpression(skipExpr).asInstanceOf[Int]
val count = evalExpression(countExpr).asInstanceOf[Int]
val max = skip + count
val aggregator = new PriorityQueueAggregator[Row](max) //pq's size bounded by max

process1.lift(aggregator.prepare) |>
process1.reduce(aggregator.reduce) |>
process1.lift(aggregator.present) flatMap { (x: Seq[Row]) =>
Process.emitAll(x)

} |> process1.drop(skip).take(count)

mkOrder() combines Order objects stored in type information for fields to an Ordering
instance for the whole row.

Type information is also useful for evaluating simple expressions.

case Apply("+", lExpr :: rExpr :: Nil) =>
val l = evalExpression(lExpr)
val r = evalExpression(rExpr)
val field = lExpr.tpe.asInstanceOf[ScalaNumType[Any]].field
field.+(l, r)

Here .field is a breeze.Field described in section 3.4.

6.4.3. Environments
In order to implement the higher order functions introduced in section 4.2.2 the interpreter
must be able to construct and access a mutable Environment (state). In Relaks Environments
are stackable Sym → Expression Maps placed on the top of the basic definitions Map provided
by the Symbols trait (listing 2, section 3.6.1). Whenever a function is about to be executed, a
new environment is pushed on the top of the stack, filled with the function arguments’ values
linked to Syms listed in a Generator. After exiting the function, the environment is popped
from the stack. The trait providing Environments overrides the .findDefinition() method
from listing 2, so that accessing Sym links is recursive, starting at the top of the stack.

Syms can be written and overwritten at any level of the stack. In chapter 7 we will see
how to use this property to perform run-time optimizations of the IR such as hoisting and
caching.
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Chapter 7

Advanced Extensions

Relaks extensions we have seen so far provided the essential functionality for the object-
language and object-program. The extensions we will introduce in this chapter will further
expand Relaks’ capability for interacting with different types of data and code and improve
programs’ efficiency.

7.1. LINQ to Drill
With a LINQ implementation already in place it would be a shame not to include an option
for querying data tables, especially as operations on tables are often a part of a machine
learning pipeline.

Apache Drill1 [HN13] is a query engine without the datastore layer. It can operate on
data stored in various formats (including CSV and JSON) in the filesystem or in external
data warehouses without the overhead of data set import.

Drill can be queried using a SQL subset. Communicating with Java programs is possible
using JDBC, the standard library for taking to relational databases. We will focus on CSV
files and execute a Drill query while interpreting the LoadTableFromFs node defined in section
4.2.3.

case _/> Select(LoadComprehension(LoadTableFromFs(path)), seq) if
path.endsWith(".csv") =>↪→

val initialProjections: Seq[(Field, TType)]
val projection: String = toProjection(projectL)
val query = s"SELECT ${projection} FROM dfs.`${path}`"
val rows: Process[Task, WrappedResultSet]

if (projection != "*") {
val schema = Schema(initialProjections.map(x => x._1.name -> x._2).toVector)
rows |> process1.lift { wrs =>

logger.debug("got drill row")
new JDBCRow(wrs, schema)

}
} else {
rows |> process1.lift { wrs =>

val array = wrs.any(1).asInstanceOf[JsonStringArrayList[Text]]

1http://drill.apache.org/
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val vals = (0 until array.size()).map(i => array.get(i).toString).toVector
new CsvAllRow(vals)

}
} // returns Process[Task, Row]

There are a few quirks of CSV processing with Drill. First of all, it does not process
header rows and for each row all columns are stored as a list named columns. Drill is capable
of working with collections and performing type casts, but we would explicitly need to
specify the CSV file schema. In the case of Typed Table representations we already have
that, so it is enough to traverse the operator sequence seq and collect field names and types.
Following Relaks’ semantics, the cast is constructed from initital Operators up to the first
Transform Operator. If the Transform Operator is Untyped, then we must issue a SELECT *
FROM ... query to Drill, selecting all columns in the CSV file. Otherwise, Fields and types
stored in the IR are collected and SQL code for casting is generated.

val table = load("table.csv")
table.filter("columns[0]".::[Int])

(case Tup(first) => first > 10)
.apply("columns[1]".::[Double],

"columns[2]".::[String])↪→

//returns
Rep[TypedTable[Tup[Double::String::HNil]]]↪→

SELECT CAST(columns[0] as INT),
CAST(columns[1] as DOUBLE),
columns[2] FROM dfs.`table.csv`

↪→

↪→

Listing 6: A LINQ query and a corresponding SQL query issued to Drill.

Note that, albeit very limited at the moment, we have effectively introduced another
object-language to our now multi-language, multi-stage program. With an additional effort
we could lift Operators (including predicates, sorting, simple expressions etc.) into SQL
queries and rely on the database backend come up with an efficient execution plan.

In section 6.4.2 we have seen the interface for a Table Row implementation. The Drill
Interpreter chooses one of two implementations of the impl.Row interface, based on the
executed query. impl.JDBCRow and impl.CsvAllRow differ on the underlying storage type.
impl.JDBCRow contains a JDBC ResultSet with column name information and concrete types,
while impl.CsvAllRow is just a String Vector, as by default CSV files are read as rows of
Strings. In the latter case the Injection[T, String] stored with type information becomes
useful for working with columns of effective types other than String2.

7.2. Calling Native Scala Code
Calling native Scala functions in the multi-stage program run-time stage can be useful for
many reasons. First of all, it is no secret that interpreted languages are usually slow compared
to compiled ones. As the JVM performs various optimizations, such as JIT compilation, and
the interpreter language is simpler than Relaks’ compiled Scala functions should be faster
than interpreted expressions. Secondly, the lack of effects and recursion in Relaks can be
limiting in some cases. When there is no need for IR inspection and the function behaves like
a pure function from the outside, the constraints can be loosened. Last but not least, Scala
and Java benefit from a rich set of libraries created the over many years they have been used

2 Although the Injection is of type T → String, usually an Injection.inverse() method is implemented as
well enabling conversion both ways.
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in the industry. Since Relaks programs already run on the JVM heap, we can access all those
libraries at virtually no cost.

As usual, we will begin by introducing a set IR nodes for Native Scala Calls.

sealed case class ApplyNative(fn: Any, argTuple: Expression) extends Expression
sealed case class Native(value: Any) extends Atom

ApplyNative represents a reflective call to some Scala function fn using tuple argTuple as
arguments. Native wraps the result of a function call.

The expression

to (knn _) apply (k, dist, test)

is represented by an ApplyNative node. knn() is a Scala function (Int, DistMatrix,
impl.Row) → Decision and the tuple (k, dist, test) is of type Rep[Tup[Int :: DistMatrix
:: Tup[..] :: HNil]]. The Native Type extension makes heavy use of Scala’s implicits to
enforce type safety. First, shapeless macros are used to convert a function of type (A, B, ...,
X) → Out to type A::B::...::X::HNil → Out. Next, the argument hlist element types must
be translated to their corresponding empty types whenever applicable. We have mentioned
before that several types appearing as type arguments in Rep[T] are empty – they are never
instantiated and provide no useful implementation. On the other hand, a Scala function such
as knn() must operate on concrete objects, so the meta-language must know which empty
types correspond to which objects created by the interpreter. The task is straightforward
with types like Int or String, but translations for others, such as Tup or TypedTable, must be
explicitly provided.

class Translation[X, Y]
implicit val tableTranslation = new Translation[Table, impl.Table]
implicit val untypedTableTranslation = new Translation[UntypedTable,

impl.UntypedTable]↪→

implicit def typedTableTranslation[H <: HList] = new
Translation[TypedTable[Tup[H]], impl.TypedTable[H]]↪→

implicit val rowTranslation = new Translation[Tupl, impl.Row]
implicit val untypedRowTranslation = new Translation[UntypedTup, impl.UntypedRow]

Here the translations are written inversely, to emphasize that it is an empty type that is
being translated. For modularity the translations should be provided by appropriate DSL
extensions.

The case of identity translations is particularly interesting, as we would like to keep the
type only if an explicit translation is not defined. Explicitly defining all possible translations,
including identity translations, is unfeasible, as with the introduction of Native Call Exten-
sions a representation can be of any valid Scala type. Fortunately, Scala’s implicit system has
a limited (and probably accidental) support for negation. Scala will not be able to provide
an implicit whenever more than one implicit instance exist in the scope at the same time.
We get negation for some type by introducing ambiguity – purposefully defining two implicit
values of that type.

Here, we would like to be able to negate the Translation type, if a Translation already
exists. Therefore, we instantiate an implicit value of type Not[Translate[X, Y]] (where Not is
just some trait) for each X and Y, and again for each X and Y whenever an implicit Translate[X,
_] or Tanslate[_, Y] instance exists.

Once finished with the function’s parameters, we modify the function to wrap its results
in a Native node whenever the return type is not a Rep already.
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To give an example, let us go back to our knn() expression – in this case the following
steps will be performed:

1. Functions is transformed from (Int, DistMatrix, impl.Table) → Decision to an Int
:: DistMatrix :: impl.Row :: HNil → Decision function.

2. The argument hlist is translated to Int::DistMatrix::Tupl::HNil.

3. The tuple (k, dist, test): (Int::DistMatrix::Tup[H]::HNil) is checked for whether
it can be applied to the function. As Tup[H] <: Tupl the application is possible.

4. As knn() does not return a Rep, the function is wrapped in a higher order function that
will return a Native node applied to knn()’s result. The type of the expression becomes
Rep[Decision].

7.3. Hoisting and Caching
In section 3.6 we have stated the need for a let insertion/caching mechanism. Let us look at
a few examples to build a better understanding of what we are trying to achieve.

val a: Rep[Int] = 1
val b: Rep[Int] = 2
val c = a + b
c * c

This is the example from section 3.6. Without any optimizations the following IR will be
processed by the interpreter.

Apply(∗)

1 1

1

Apply(+)

Literal(1) Literal(2)

…
definitions

Even though Relaks recognizes common subexpression, it will sill be evaluated twice, as
no intermediate results are stored. As stated previously, at some point we would like to
transform the representation to a more efficient version, so that the same expression will not
be evaluated twice.

Apply(∗)

1 1

1

Literal(1 + 2)

…
definitions

This transformation can be described in simpler terms using an exemplary imperative
language.

var a = 1
var b = 2
fun c() = a + b
c() * c()

=⇒

var a = 1
var b = 2
fun c() = a + b
var c_memo = c()
c_memo * c_memo
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Higher order functions were introduced to express call-by-name semantics. With this
example we are starting to see the solution we are looking for – subexpression c should be
evaluated once, and its results stored and reused instead of c() in the future.

Here is another example, with even greater capacity for optimization.
loop (var i = 0; cond(i); i++) {
var a = doSomethingUnrelated()
doSomethingElse(i)

}

=⇒

var a = doSomethingUnrelated()
loop (var i = 0; cond(i); i++) {

doSomethingElse(i)
}

This transformation is called hoisting. The value of a is loop invariant – it does not change
with the iterations of the loop, therefore it can be moved outside. A variable is loop invariant
when it does not depend on anything created in the loop’s scope, including the iterator.

Although Relaks does not have an explicit construct for blocks, stacking environments
produced by Generators while executing inlined functions (sections 4.2.2 and 6.4.3) produce
similar effects. Therefore it still matters at which level of the stacked environment a value
is stored – too high on the stack means that the value will be evicted before we can use it
again, too low will just take up memory space.

Loops in Relaks are based on generators and lists (or tables) rather than conditions.
We can often extract useful information about the size of the loop or the number of unique
elements. Let us consider a bit more complicated example.

nloop (longList, shortList) { i, j =>
var a = doSomething(j)
a + i

}

var cache = emptyCache
nloop (longList, shortList) { i, j =>

var a = cache.tryGet(j) || doSomething(j)
a + i

}

nloop(list1, list2, ...) is a nondeterministic loop over a cartesian product of a (pos-
sibly infinite) set of lists. This is a simplified model of what happens inside the iterative
hyperparameter tuning process – we can think of the longList as of an optimization over a
continous parameter, while shortList represents a discrete parameter’s space. Note that this
is substantially more complicated than having two nested loops, which could be optimized
by loop reordering. The order of evaluation is not determined, and there may even be some
configurations that would never be evaluated. The cache mechanism is a workaround for this
problem, although it should not be used eagerly. Let us consider what happens when i and
j change places in the previous example:

nloop (longList, shortList) { i, j =>
var a = doSomething(i)
j + a

}

When longList is very large, much bigger than the shortList, it does not make sense to
memoize the results of doSomething(i) – the probability of a cache hit would be close to zero.

The last example will show how to effectively use a cache in even less friendly conditions.

nloop(superLongList) { k =>
nloop (longList, shortList) { i, j =>
var a = doSomething(j, k)
a + i

}
}

nloop(superLongList) { k =>
var cache = emptyCache
nloop (longList, shortList) { i, j =>

var a = cache.tryGet(j) || doSomething(j, k)
a + i

}
}
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As the superLongList is even bigger than the longList, it does not make sense to cache
every possible value of doSomething(j,k). Instead of inserting the cache at the top level,
we can make it local to the outer loop’s iteration – it will be useful while the inner loop is
working and then automatically removed for an iteration with a new k.

7.3.1. Implementation
Relaks includes a proof-of-concept implementation of hoisting and generic caching. It can
reason about the sizes of loops and the number of times each value may appear in it and tries
to come up with the best caching scenario. Caching is introduced by providing an extension
and a slight modification to the basic stackable interpreter function from section 6.4.2.

def evalExpression(expr: Expression): Any = expr match {
case _/>Literal(v) => v
case _/>(c: CachedExpression) => retrieveFromCache(c)
case Some(sym) /> (expr: Expression) =>

cache(sym)
case _ => throw new NotImplementedError(s"Evaluating $expr not implemented")

}

case class CachedExpression(key: Int, cacheLevel: Int, cardinality: Int, args:
List[Sym], original: Expression) extends Atom with Leaf↪→

}

trait BaseCachingInterpreter {
protected def retrieveFromCache(cachedExpression: CachedExpression): Any
protected def cache(s: Sym): Any

}

Matching all nodes of that are Sym links automatically includes a caching layer for
all stacked interpreters. Upon first sight the original linked expression is replaced with
a CachedExpression logical node, which includes information on how to access the cached
value. key plus args instantiated to concrete values are used to uniquely identify the mem-
oized object. cardinality is an upper bound on expected appearances of a distinct value
(the number of different objects that may be cached for this CachedExpression) in a loop.
level refers to a place in a stack to look for the appropriate cache. The stack of caches
works alongside Environments stack, pushing and popping new layer happens at the same
time for both data structures – the lower the level, the shorter a value that will be stored.
Finally, the original Expression can be used to construct another value for the expression –
useful for either reconstructing an evicted object or instantiating the value with a new set of
parameters.

Caches are implemented with Google Guava’s Cache for Java3. Currently the values are
stored as Java’s soft references4, which are garbage collected by the JVM once the memory
begins to run out. With Guava it is straightforward to implement other eviction strategies,
such as based on manually specified maximum size.

The most complicated part of the caching mechanism in Relaks is cardinality (or the-
number-of-distinct-values) estimation for expressions. Cardinality itself is implemented as a
simple structure with a plus operation (N ∪ Inf, ⊕), where

3https://github.com/google/guava/wiki/CachesExplained
4http://docs.oracle.com/javase/6/docs/api/java/lang/ref/SoftReference.html
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a ⊕ b =
{

Inf if a = Inf ∨ b = Inf
a × b otherwise

For each estimated node dynamic dependencies are collected first. By dynamic dependen-
cies we mean Syms from the node’s subtree (or transitively from the current loop’s context),
that are not accessible before run-time, either because they link to a hyperparamter definition
or are the “holes” to be filled in by the inlined function’s parameters. Loop context includes
the Source Query of current LINQ expression and dependencies derived by traversing the
Comprehension IR node. Next, a simple heuristic is used to determine cardinality for each
dependency.

val cardinalityEstimation: Expression => Cardinality = attr {
case _/>> (HyperparamRange(_, _) :@ tpe) if tpe == ScalaTypes.doubleType =>

Infty.left↪→

case _/>> HyperparamRange(_/>>Literal(left), _/>>Literal(right)) =>
(right.asInstanceOf[Int] - left.asInstanceOf[Int]).max(1).right

case _/>> HyperparamList(list) => cardinalityEstimation(list)
case _/>> ListConstructor(lst) => lst.length.right
case _/>> Literal(l:List[_]) => l.length.right
case _/>> TableFromList(lst) => cardinalityEstimation(lst)
case _/>> LoadTableFromFs(_) => Infty.left

}

Then we must look for the best cache level to insert the cached value. The cardinality
of an expression is evaluated incrementally against the environment stack in the current
context. Starting from the last environment on the stack (the least nested), we are looking
greedily for the smallest sub-stack that has a finite cardinality. In each iteration we merge
all dependencies’ estimations using the ⊕ operator. If the result is not finite we remove
all dependencies originating in the current environment and try again with the environment
higher on the stack. The mechanism defaults to putting the cached value in the topmost
cache – an operation equivalent to let insertion within the current scope.

Currently the implementation eagerly inserts the cache whenever the cardinality is “some-
thing less than infinity”. It could be easily modified to allow only caches of size below a certain
threshold.

Future Work

The cardinality estimation and caching scope is very simplistic at the moment, although it is
a substantial improvement over the call by name policy. Instead of fully materialized tables
only a Process instance is stored – accessing it again would recompute the whole query.
Better cardinality estimation for queries would allow a bolder table caching policy and might
be a partial solution to the query avalanche problem (section 4.2.3) – it remains an important
future work.

Note that the CachedExpression carries a huge overhead when used to store primitive
values. Succeeding versions of Relaks should specialize the caching mechanism for working
with simple types.
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Chapter 8

Evaluation

This chapter presents hyperparameter tuning scenarios that validate the basic Relaks frame-
work and its advanced extensions.

8.1. Branin-Hoo
First, we will consider a simple example of finding the minimum of a two-dimensional con-
tinuous function.

f(x) = (x2 − 5
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1 − 1
8π

) cos(x1) + 10

Figure 8.1: Branin-Hoo function, log scale.

Branin-Hoo1 or Branin is commonly used for evaluating Bayesian optimization techniques.
Within the domain −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15 it has three global minima f(x̂) =
0.397887.

The optimization scenario implementation in Relaks is fairly simple.
1http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page913.htm
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object Program extends Relaks(SpearmintOptimizer) {
val x = choose between 0.0 and 15.0
val y = choose between -5.0 and 10.0

val result = optimize (x, y) map { case Tup(x, y) =>
val res = to (branin _) apply (x, y)
(x as 'x, y as 'y, res as 'result)

} by 'result limit 200

run(result)
}

The tuning performance varies on the acquisition function used by Spearmint. We have
evaluated two of the available functions: EI and EI Opt. Both of them use expected improve-
ment (EI) to choose the next candidate, but EI Opt uses a more thorough and expensive
sampling method for computing the EI. It tends to achieve better results, but with time each
Spearmint evaluation takes substantially longer.
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Figure 8.2: Dots mark the configurations cho-
sen by the EI function. Log scale, darker is
smaller.

x y result
-5.0 0.0 308.129
2.5 7.5 24.129
6.308 11.191 121.417
-1.982 7.822 9.545

...
2.866 2.270 0.812
9.985 3.823 2.564
-3.103 11.271 1.234
-3.227 13.051 0.757
5.517 0.322 17.610

Table 8.1: An experiment
database generated for the
Branin experiment.
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Figure 8.3: Choices of the EI Opt function.
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Figure 8.4: Results produced by each tun-
ing iteration, cut off after the 75th. Triangles
mark the EI function, circles is EI Opt.
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Both methods were set to run 200 evaluations, although EI usually converged after about
50 iterations. The minima found were 0.4764 and 0.3979 for EI and EI Opt respectively,
which is in line with previous results achieved with Spearmint [EFH13].

8.2. Knn
In section 1.1.3 we have already mentioned the issues with tuning a knn classifier. In the
next example we will be looking for the best set of hyperparameters for a knn classifier to
use with Vowel Recognition Data Set [Lic13]. The data set consists of 15 speakers saying one
of eleven vowels six times. Each instance consists of a ten dimensional vector of speech data.
The goal is to train a classifier to identify a vowel using only a subset of speakers and then use
it to classify vowels spoken by previously unseen speakers. The data has been preprocessed
for 4-fold cross validation, partitioned by the speakers, so that all instances of a speaker fall
into the same fold. An additional column identifying the fold has been added.

We are going to use a knn classifier, testing the performance with k ranging from 1 to
5 and one of four distance measures: the Minkowski distance for p = 1 (Manhattan), 2
(Euclidean) and distances based on infinity (Chebyshev) and zero (Hamming) vector norms.

Since the parameter space is fairly small (5 distinct values for k and 4 different distance
functions, 20 possible configurations) and the classifier is simple we are going to use the grid
search algorithm for hyperparameter tuning.

1 object Program extends Relaks(GridOptimizer)
2 import Program._
3

4 case class FeatureVec(features: Vector[Double], klass: Int)
5

6 val distFn = choose from List(normDistance(1).asRep,
7 normDistance(2).asRep,
8 hammingDistance.asRep,
9 infNormDistance.asRep)

10 val k = choose between 1 and 5
11 val ds = load("./train-vowels.csv")
12

13 def dataSet(filter: Row[Int] => Rep[Boolean]) =
14 ds.filter(Tuple1("columns[11]".::[Int]))(filter)
15 .map({(row: Rep[UntypedTup]) =>
16 val vec = row.liftMap(rowi => FeatureVec(rowi[Double](0 to 9),

rowi.get[Int](10)))↪→

17 vec as 'features
18 })
19

20 val f1_avg: Rep[Double] = List(1,2,3,4).asTable.map({ case Tup(Tuple1(fold)) =>
21 val train = dataSet(row => row(0) neq fold)
22 val test = dataSet(row => row(0) === fold)
23

24 val tree = (makeTree _).pure.apply(distFn, train)
25

26 val confMatrix: Rep[DenseMatrix[Double]] = (knn _).pure.apply(k, tree, test)
27 val f1_score = confMatrix.liftMap(mx => -f1_accuracy(mx)._1)
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28 f1_score as 'result
29 }).avg
30

31 val experiment = optimize ((k as 'k, distFn as 'dist, f1_avg as 'result)) by
'result↪→

32

33 run(experiment sortBy 'result)

First, the hyperparameter configuration is specified and the data is loaded from a CSV
file. The dataSet function takes a filter as a parameter and applies it to the data set. The
intention is to use the filter to select data belonging to a correct fold.

Then the data set is mapped into a Feature Vector, which is a native Scala class. Since
the data has 12 dimensions, it would be too strenous to specify the full schema by hand.
Instead, we use an Untyped Table and map a subset of columns from each instance to a
Vector. row.liftMap(f) (line 16.) is a shorthand for to (f _) apply (row).

In line 20. a (staged) List[Int] is transformed (transposed) into a TypedTable[Tup[Int::HNil]].
The list represents the four cross validation folds. For each fold the data set is split into a test
and a training set. The training set is used to construct a M-tree – a structure for slightly
more efficient spatial queries. Scala’s native function makeTree(), given a distance function,
constructs a M-tree from a Table (line 24.).

The tree is then used to predict the vowel label from the test set. knn(), another host
function takes the k paramter, the M-tree and the test Table and returns a confusion matrix
(line 26.). We will need the confusion matrix to compute the error. We are estimate the error
with F1 score2, a measure frequently used to evaluate multiclass classification problems. Since
it is an accuracy measure (the bigger the better), we need to multiply the result by −1 because
the hyperparameter tuning algorithm will try to minimize it (we are using grid search at the
moment, so it does not really matter, but we might want to replace it with Spearmint in the
future).

Finally an average error across all folds is computed (line 29.) and the optimization
scenario is run. Note that if we did not care for storing the hyperparameters’ values in the
experiment database, we could optimize just the f1_avg object – the interpreter would figure
out the hyperparameter dependencies automatically.

Caching
The knn example uses all the features available in Relaks – loading data from files and
processing it with LINQ, native function calls, automatic hyperparamter tuning and, behind
the scenes, the caching algorithm. The most interesting instance is the makeTree() result (line
24.). We can easily see that there is some potential for memoization here – the function works
with a data table and thus can take some time to compute, so the gain from caching would
most likely be noticeable. Furthermore, the function uses just one of two hyperparameters,
which means a higher probability of a cache hit during the optimization.

Unfortunately, the call is made from a cross validation inner loop and it cannot be hoisted.
All in all, the result of makeTree() depends on the distFn hyperparameter and the train
parameter, which in turn depends on the fold value generated by the List Table.

Relaks’ cache extension can figure out those dependencies. It will resolve the parameters
required to create a unique cache key for each instance of makeTree()’s result (in this case
the value of fold and distFn) and place the cache in the global (last) scope. Based on the

2https://en.wikipedia.org/wiki/F1_score
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size of the distFn list (4) and the List Table (4), the estimated cardinality will be 16. As
the total number of iterations for the example is 80 (16 times the size of k’s space), we can
expect a cache hit rate of 75%.

We have compared running the experiment with and without a cache. In this instance
caching is super effective, as it saves us a trip to the database and processing the full set of
rows.
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Figure 8.5: Experiment timed with and without cache, averaged over 10 runs.

Results

It turns out that the best hyperparameters are k = 4 and the Manhattan distance measure.
The best configuration evaluated on a validation data set, set aside in the beginning, achieves
a 49.5% accuracy, with 229 out of 462 test samples classified correctly.

Can we do better? The only way to be sure is to run more experiments.
With just a small modification to the original code

object Program extends Relaks(SperamintOptimizer)
...
val p = choose between 0.1 and 4.0
val tree = (makeTree _).pure.apply(p.liftMap(p => normDistance(p)), train)

we sacrifice caching makeTree(), but in turn we can test Minkowski’s distance with the p
parameter ranging from 0.1 to 4.

Relaks evaluates 200 iterations of hyperparameter tuning in under 9 minutes. The F1
score achieved this time is slightly better, and the validation data set accuracy improved as
well, up to 51.73%, closer to the state of the art result for knn classification on this data set
– 56% [Lic13].
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k dist result
4 normDistance(1.0) -0.453
3 normDistance(1.0) -0.451
1 normDistance(1.0) -0.437
2 normDistance(1.0) -0.437
5 normDistance(1.0) -0.435
1 normDistance(2.0) -0.395
2 normDistance(2.0) -0.395
3 normDistance(2.0) -0.392
4 normDistance(2.0) -0.384
5 normDistance(2.0) -0.366
3 normDistance(inf) -0.324
5 normDistance(inf) -0.321
1 normDistance(inf) -0.284
2 normDistance(inf) -0.284
4 normDistance(inf) -0.279
3 hammingDistance -0.113
4 hammingDistance -0.108
1 hammingDistance -0.100
2 hammingDistance -0.100
5 hammingDistance -0.053

Table 8.2: (Sorted) results of
the knn experiment.

k dist result
1 1.23755 -0.47187
1 1.61976 -0.46158
5 1.11552 -0.46103
5 1.11418 -0.46103
5 1.11457 -0.46103
5 1.11610 -0.46103
5 1.11594 -0.46103
5 1.11370 -0.46103
5 1.11516 -0.46103
5 1.11489 -0.46103
5 1.11426 -0.46103
5 1.11688 -0.46103
5 1.11497 -0.46103
5 1.11716 -0.46103
5 1.11396 -0.46103
5 1.11658 -0.46103
5 1.11458 -0.46103
5 1.11525 -0.46103
5 1.11441 -0.46103

...

Table 8.3: Top results of the knn ex-
periment with a continuous p value.
Note that when the hyperspace rep-
resented by the data set is sparse
(which is often the case with high-
dimensional data) and the distance
function changes only slightly, the
predictions might not change at all.
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Chapter 9

Discussion and Future Work

Relaks successfully implements a framework for meta-learning. It integrates creating hyper-
parameter optimization scenarios into a Domain Specific Language. We have shown that its
syntax is simple and familiar to the developers already acquainted with SQL or LINQ in other
frameworks. Even major changes in tuning configuration and strategies can be specified with
ease.

We have validated the choice of implementing the framework as a DSL by presenting
the potential for analysis and optimization allowed by the direct access to the IR. Rewriting
strategies present in other compilers and interpreters and those specific to application with
meta-learning were introduced.

We have introduced a type safe LINQ implementation and integrated it with two hyper-
parameter tuning algorithms, allowing the user to control declaratively their behavior, with
no knowledge of their implementation required.

We have shown how Relaks fits in a real-life machine learning pipeline, enhancing it and
removing some burden from programmers’ shoulders.

The work presented in the thesis is but a first step in implementing a framework for
declarative meta-learning. While it is already useful, there is still room for improvement. In
the rest of this chapter we will revisit the problems and weaknesses of Relaks mentioned in
the previous chapters and sketch a plan for future enchancements.

9.1. Future Work
Extending LINQ
Our ultimate vision for declarative meta-learning experiments includes a portfolio of machine
learning algorithms aware of the hyperparameter tuning system. We would like to reach a
point when a user can take a generic algorithm from the portfolio and seamlessly tune it for
her machine learning pipeline using a natural syntax.

optimize(knnAlgorithm).filter(knn => knn.k < 5 and knn.distFn == manhattan).map(knn
=> knn.train(...))↪→

We have laid an important groundwork already, but to execute effectively such query
Relaks should implement the aforementioned predicate move-around techniques [LMS94],
tailored to meta-learning’s specific demands.

Improving the capabilities of LINQ implementation is also in order. Both operations
natural to traditional databases (such as grouping) and those useful in our context (e.g. a
limit for the total time an experiment will take) are important extensions. Furthermore, the
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query avalanche problem, for which the caching extension is just a work-around, should be
solved while introducing a full support for joins.

Code Generation
Right now, while we introduce some extensions to improve efficiency, Relaks does not put
much emphasis on the speed of execution. Substituting the interpreter with a code generator
for Scala (or Java) and SQL will be a crucial improvement in this matter. Since big parts of
Relaks – IR representation, its manipulation extensions, static analysis and rewriting – are
indifferent to what happens at later stages of a multi-stage program, the transition will only
affect an isolated part of the current system.

Concurrency
Distributed or parallel processing is an important part of any machine learning solution.
With an ever-growing data sets, exploiting just one processor of just one machine is often
not enough.

While the hyperparameter tuning algorithm framework is implemented with concurrency
in mind, there are some things to be considered in other parts of Relaks, especially with the
transition to code generation in mind. Concurrency could either be implemented directly in
Relaks or achieved via integration with other systems, such as Spark [Zah+10].

Persistent Caches and Experiment Databases
Extending the cache to support off-heap storage could offer benefits to some long-running,
data-heavy pipelines (see [Li+14]), but also take the experiment database paradigm one
step further. With a resilient caching system capable of storing different kinds of data come
numerous advantages, namely the capability to interrupt a long running optimization scenario
and resume it later, or the ability to review and query all previous experiments’ results.
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